我们在日常生活中常常需要估算个案间或变量间的相似程度,这时候我们可以采用计算个案间或变量间的距离的方法即距离分析。需要注意的是,距离分析的结果并不会给出显著性值,只是给出个案间或变量间的距离的大小,然后由我们自行灵活地判断其相似程度或不相似程度。
作为非参数检验之一的卡方检验用于判断样本是否来自特定分布的总体的检验方法,主要用于研究总体分布和理论分布是否存在显著差异。适用于有多个分类值的总体分布的分析。
IBM SPSS Statistics为我们提供了很多比较平均值的方法,其中独立样本T检验主要研究两个样本或两个案之间均值是否存在显著差异。
在《SPSS中使用简单对应分析两定性变量间关系》一文中,我们已经了解到可运用简单对应分析得出两个定性变量类别值间的对应关系。接下来,本文将会继续运用SPSS的最优标度分析,更加深入地研究多个定性变量间的对应关系分析。
K均值聚类、分层聚类、二阶聚类是SPSS聚类分析中常用的三种聚类方法。K均值聚类使用的是欧式距离的测量方法;分层聚类是根据度量的距离远近,构建谱系分析;二阶聚类是利用距离测量得到分类树,然后再利用BIC或AIC准则判别最佳聚类。
IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。
IBM SPSS Statistics的对应分析与常用的因子分析同属降维分析,但不同于因子分析可应用于定性与定量数据,对应分析只能用于两个定性变量的分析,并且主要是通过分析定性变量的列联表数据来得出变量之间的关系。
在《详解SPSS两步聚类之参数设置》一文中,我们已经了解了两步聚类的优点、分析原理,以及参数设置的技巧。
SPSS的快速聚类(K均值聚类)仅可进行连续型变量的聚类;而系统聚类,虽然可进行连续型与分类型变量的聚类,但同一时间只能进行同一种变量类型的聚类分析。那么,有没有一种聚类方法可同时分析以上两种变量?
在刚刚开始着手于一项研究时,利用问卷调查收集数据无疑是大多数人的选择,而如何处理收集到的数据有很多种方法,其中利用IBM SPSS Statistics软件来进行处理是比较方便且实用的,IBM SPSS Statistics软件的界面属于用户友好型,操作起来也较为简易。
微信公众号