SPSS > 使用技巧 > SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值

SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值

发布时间:2025-06-30 17: 01: 00

品牌型号:联想ThinkBook

系统:windows10 64位旗舰版

软件版本:IBM SPSS Statistics 29.0

在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。

一、SPSS因子负荷系数表怎么做

因子负荷系数指的是相应数值的方差比例,因子负荷系数越大表示变量预测的公共因子越多,其因子结构的表现更佳,例如因子载荷大于0.71表示公共因子解释对应变量50%的方差,属于因子分析的理想情况。

1、下图是针对某校大学生展开的网络贷款认知调查的数据信息。研究者想要了解当代青年人群的消费观,由于问卷涉及的题项众多,例如大学生对网络借贷过程的认知、大学生自身的经济条件、学校有关经济管理的课程设置等情况,所以需要通过因子分析来简化繁杂数据。

某校大学生的网络信贷观念
图1:某校大学生的网络信贷观念

2、首先需要进行KMO和巴特利特球形检验,这是进行后续因子载荷分析的必要前提,只有KMO大于0.5且显著性小于0.05才能够证明相应数据的采集符合因子分析的基本条件。所以我们先要找到SPSS数据编辑页面的降维功能,在其中因子分析的描述模块勾选初始解、系数以及KMO相关的题项。

降维模块的因子分析
图2:降维模块的因子分析

3、当特征值大于1且方差贡献率大于80%时,因子分析可以提取公共因子变量,如果指标过多致使因子表现不明显,可能还需要旋转因子矩阵的数据支持。所以我们在因子提取的功能页面勾选未旋转因子解和相关性矩阵,并且完成特征值大于1的选项设置。

因子提取的题项设置
图3:因子提取的题项设置

4、一般情况下,旋转因子结果通过最大方差法进行计算和分析,我们按照常规设置进行因子分析的旋转题项的操作设置,同时选择后续结果显示旋转后的解,得以清晰明确地获悉因子载荷的计算过程。

显示旋转解
图4:显示旋转解

二、SPSS因素负荷是哪个值

除了判断数据是否适合用来进行因子分析的KMO相关检验,旋转后的成分矩阵得出的因子负荷系数可以使每个题项归列为明确的公共因子之中,而将大于特征值1的成分予以保留的总方差解释进一步计算方差贡献率,有助于高效的数据简化。

1、KMO相关检验的值介于0至1之间,越接近1表明变量数据越适合做因子分析,下图的KMO取样适切性量数为0.744且巴特利特球形度检验的显著性小于0.05表示案例数据通过因子分析的前置测验。

通过因子分析前置测验
图5:通过因子分析前置测验

2、下图所示,按照因子负荷系数大小排列,成分1能够解释Q10、Q13、Q7、Q2、Q5、Q4、Q18的变量,其中,Q10利率的高低这一最大的因子负荷系数为0.809,成分2能够解释Q22、Q25、Q19、Q23、Q21、Q16、Q24的变量,而Q22我认为使用互联网信贷是一种社会趋势这一最大的因子负荷系数为0.754。

Q10为成分1最大因子载荷的题项
图6:Q10为成分1最大因子载荷的题项

3、在如下的总方差解释表中,初始特征值表示每个因子的方差贡献,一般主成分可解释的总变量占比应当超过60%。在本案例数据的分析结果中,前两个因子特征值分别为6.26和2.351,累计解释了86.116%的总方差。

符合常规的总方差解释数据
图7:符合常规的总方差解释数据

三、小结

以上就是SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值的解答。如果想要从繁杂变量之中提取少数因子来简化数据,推荐使用SPSS因子分析方法计算因子负荷系数。最后,也欢迎大家前往SPSS的中文网站,学习更多关于数据分析的操作技巧。

展开阅读全文

标签:SPSS因子分析SPSS因子分析步骤

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验怎么测中位数 SPSS非参数检验z值的意义
IBM SPSS Statistics这款软件对用户非常友好,例如非参数检验、数据随机性验证等统计分析,不需要复杂的操作,跟着步骤提示进行操作,即可快速生成统计结果表,新手也能快速掌握。今天我们就围绕SPSS非参数检验怎么测中位数,SPSS非参数检验z值的意义相关内容为大家展开介绍。
2026-01-30
SPSS随机值检验步骤 SPSS随机检验结果怎么看
很多人都听过IBM SPSS Statistics这款软件,它是数据分析的可靠搭档,不仅能轻松搞定数据的整理、转换,最后还能自动生成图表,对新手非常友好。对于经常需要进行学术研究、市场调研的用户来说是个常用的选择。今天我们就来说一下SPSS随机值检验步骤,SPSS随机检验结果怎么看的相关内容。
2026-01-30
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: