发布时间:2021-01-11 11: 49: 54
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
本文,将会重点讲解单因素方差分析方法的事后多重比较及其检验结果的解读。我们使用的数据是4组初中生身高样本数据,检验的是4组初中生身高样本数据均值是否有差异。

一、事后多重比较
如图2所示,在事后多重比较中,包含了假定等方差与不假定等方差的情况。由于未进行方差齐性检验,需将两种情况的检验方法都勾选上。那么该勾选哪些检验方法呢?
假定等方差的情况下,常用的是LSD法,也就是最小显著性差异法,其检验敏锐度高,一些细微的差异都能检验出来。SNK检验与LSD检验相似,但检验结果更为保守,比较适用于两两比较。
而在不假定等方差情况下,常用的是塔姆黑尼法。

二、检验结果解读
完成以上设置后,运行检验。
如图3所示,从描述数据看到,初中生组4的身高均值稍大于其他三组。

接着,再看到ANOVA的检验结果,其组间的显著性数值为0.003<0.05,说明检验结果显著,拒绝原假设,也就是说不同初中生组的身高样本均值有差异。
那么,身高均值的差异出现在哪些组别?我们需要进一步查看事后多重比较的结果。

由于多重分析结果包含了方差齐性与方差非齐性的结果,我们需要先查看方差齐性的检验结果。如图5所示,可以看到方差齐性的结果显著,拒绝原假设,也就是说身高数据不服从方差齐性的假设。

因此,在事后多重比较结果中,我们需查看方差非齐性的塔姆黑尼检验结果。如图6所示,可以看到,初中生组4与其他三组的身高均值数据都有显著性差异。

从平均值图也可以看到,初中组4的平均值明显高于其他三组。

三、小结
综上所述,IBM SPSS Statistics的单因素方差分析,不仅可用于检验总体数据组是否存在差异,还可以运用事后多重比较来检验不同数据组之间的差异,是一种先验对比和事后检验相结合的检验方法。
作者:泽洋
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS如何做方差分析 SPSS方差分析结果显著性该怎么解释
在数据分析这个领域当中,许多小伙伴经常会遇到进行方差分析的操作。方差分析在数据统计中是一个常见的数据处理方式,主要用来检验数据样本的离散分布和稳定性情况。SPSS既能够帮助我们进行专业的方差分析,还可以得到数据的分析报告。接下来以SPSS为例,向大家介绍SPSS如何做方差分析,SPSS方差分析结果显著性该怎么解释的具体内容。...
阅读全文 >
SPSS偏度和峰度的分析步骤 SPSS偏度和峰度的分析结果解读
偏度和峰度是我们在进行数据分析的过程中,判断数据是否符合正态分布的重要标准之一,通过这两个数值可以很清晰地看出数据的整体走势和集中状态。因此这两项数值也经常被用于市场学分析、股市分析中,能够帮忙用户去发现某些潜在的规律。今天我就以SPSS偏度和峰度的分析步骤,SPSS偏度和峰度的分析结果解读这两个问题为例,来向大家讲解一下关于偏度和峰度的相关知识。...
阅读全文 >
SPSS ROC阈值怎样确定 SPSS ROC阈值选择导致敏感度过低怎么办
说到阈值分析,我们脑海中可能会想到常规的寻找阈值关键临界点的分析方式(例如在医学当中会通过阈值分析的方式来确定药物在病人体内生效的时间临界点)。但是在有些分析场景中,就需要用到ROC曲线作为阈值分析的工具,ROC曲线作为阈值分析中的一个重要工具,可以用来找到数据点位发生明显截断变化的临界点。下面以SPSS为例,给大家介绍SPSS ROC阈值怎样确定,SPSS ROC阈值选择导致敏感度过低怎么办。...
阅读全文 >
SPSS如何随机抽取样本数据 SPSS如何随机选取70%的数据
我们在进行数据分析的工作时,有时为了减少人为误差,避免样本集中在某些特定群体上,所以需要随机抽取样本数据。SPSS既能帮助我们处理不同的数据样本,还可以指定选取相关的数据内容,做到更加精准的数据匹配。接下来给大家介绍SPSS如何随机抽取样本数据,SPSS如何随机选取70%的数据的具体内容。...
阅读全文 >