SPSS > 使用技巧 > 应用SPSS多因素方差分析,探索因变量的影响因素(变量选择篇)

应用SPSS多因素方差分析,探索因变量的影响因素(变量选择篇)

发布时间:2021-01-12 11: 35: 23

IBM SPSS Statistics多因素方差分析,检验的是两个或两个以上的因素对变量产生的影响,与单因素方差分析的思想一致,都是利用方差进行比较,来检验多因素是否对变量产生显著性影响。因此,数据也需要满足正态分布、方差齐性、观测值独立的前提。

多因素方差分析包含了主效应以及交互效应的影响,分别代表的是因素对变量、多因素共同对变量产生的印象。另外,还可通过事后多重比较检验因素之间的差异性。接下来,我们通过实例演示一下多因素方差分析。

一、打开数据文件

如图1所示,打开一组包含性别、工作年限与工资变量的数据,目的是研究性别与工作年限对工资是否有显著性影响。

图1:示例数据

由于当前数据中的性别变量使用的是字符串值,可将其转换为数值型值,便于后续统计。当然,您也可以直接使用性别变量,因多因素方差分析允许使用定性变量作为固定因子。

如图2所示,打开转换菜单中的“重新编码为不同变量”。

图2:重新编码为不同变量

将性别添加到转换变量方框中,并在输出变量选项中为重新编码后的变量设定名称与标签。然后,单击“旧值和新值”。

图3:选择性别变量

在旧值和新值设置面板中,分别将男性、女性与编码1、2匹配,以实现性别变量的数值转换。

图4:新值与旧值相匹配

完成性别变量的重新编码后,返回数据集,如图5所示,数据集中出现了一个新的变量“性别编码”。

接下来,我们会将新的“性别编码”变量与“工作年限”变量应用到多因素方差分析中,探究性别、工作年限对工资是否有显著影响。

图5:完成性别的重新编码

二、应用多因素方差分析

如图6所示,依次单击分析-一般线性模型-单变量选项,打开单变量分析设置面板。由于多因素方差分析实际上研究的是多因素对单变量的影响,因此选取的是单变量分析选项,而不是多变量分析选项。

图6:单变量分析方法

1、选择变量

对于多方差因素分析的变量选择来说,重点关注的是因变量与固定因子的设置。

1. 因变量,即用于检验影响是否显著的变量。多方差因素分析只选择一个因变量。

2. 固定因子,即用于检验是否有显著影响的因素变量。

为了研究性别与工作年限对工资的影响,将“工资”添加为因变量,将工作年限与性别编码添加为“固定因子”。

图7:选择变量

2、轮廓图

轮廓图,也就是交互图,用于比较模型中的边际平均值。

单因子的轮廓图显示估计边际平均值是沿水平增加还是减小。如果是两个或以上因子,平行线表示因子之间没有交互,不平行则表示交互。

在本文中,我们会研究性别与工作年限之间是否存在交互关系。如图8所示,将性别添加到水平轴,将工作年限添加到单独的线条,并单击“添加”。

图8:选择图变量

完成轮廓图因子的添加后,如图9所示,选择折线图。

图9:添加图

3、估算边际平均值

轮廓图用于直观地观察因子间的交互关系,而估计边际平均值则以数值检验的方式,检验因子之间的交互显著性。一般情况下,选择“overall”即可分析主效应与交互效应。

图10:估算边际平均值

三、小结

综上所述,通过使用IBM SPSS Statistics的单变量分析,我们可以添加多个固定因子,研究多个因素对因变量影响的显著性,并可通过估算边际平均值,研究交互因子对因变量的影响。

关于多因素方差分析的解读,将会在《如何进行SPSS多因素方差分析的检验方法设置与结果解读》一文中进行详细讲解。

作者:泽洋

展开阅读全文

标签:spss多因素方差分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS检验值一般填多少 SPSS检验值可以为0吗
在SPSS检验值的测量方面,运用t检验、卡方检验、F检验等方法都可以得出p值等关键数值来分析数据之间的显著性差异,由此测量SPSS检验值是不可或缺的数据分析技能。今天我以SPSS检验值一般填多少,SPSS检验值可以为0吗这两个问题为例,带大家了解一下SPSS检验值的相关知识。
2025-04-02
SPSS检验值是什么意思 SPSS检验值怎么确定
在数据统计方面,SPSS卡方检验的运用广泛,研究者借助卡方检验可以检查两个或者多个类别变量之间的关联,对测算实际数值和期望数值的差异显著性有着重要作用。今天我以SPSS检验值是什么意思,SPSS检验值怎么确定这两个问题为例,带大家了解一下SPSS检验值的相关知识。
2025-04-01
SPSS单尾检验在哪里 SPSS单尾检验步骤详解
单尾检验常用于检验一个方向上的差异,比如某个群体的平均值是否显著高于另一个群体,而双尾检验则检验是否存在任何方向的显著差异。但很多用户在使用SPSS时发现不知道该怎么做单尾检验,下面本篇文章就来带大家了解一下SPSS单尾检验在哪里, SPSS单尾检验步骤详解的相关内容。
2025-03-26
SPSS主成分分析怎么做 SPSS主成分分析结果解读
在实际工作当中,由于收集的变量之间存在比较强的相关关系,如果直接利用数据进行分析,会让模型变得复杂,甚至可能因为变量之间的多重共线性引起较大的误差;为此,我们可以通过主成分分析来进行操作,话不多说,接下来的内容来带大家了解SPSS主成分分析怎么做,SPSS主成分分析结果解读的方法。
2025-03-26
SPSS游程检验详细模型图怎么做出来SPSS游程检验结果分析
本期我们将要为大家分享的是SPSS中的游程检验,它是一种用于检验数据序列随机性的非参数方法。通过游程检验分析,我们可以快速判断数据是否具有随机分布特征,话不多说,接下来我们就来看看SPSS游程检验详细模型图怎么做出来,SPSS游程检验结果分析的相关方法。
2025-03-26
SPSS数据描述性分析怎么做 SPSS描述性分析怎么写结论
描述性分析是属于数据分析工作的前期准备阶段,能够有效地帮助我们了解数据的整体特征和分布状况,为下一步的分析和决策提供参照。今天,我就以SPSS数据描述性分析怎么做,SPSS描述性分析怎么写结论这两个问题为例,来向大家讲解一下描述性分析的相关知识。
2025-03-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: