IBM SPSS Statistics 中文网站 > 使用技巧 > 如何进行SPSS多因素方差分析的检验方法设置与结果解读

如何进行SPSS多因素方差分析的检验方法设置与结果解读

发布时间:2021/01/13 10:51:54

《应用SPSS多因素方差分析,探索因变量的影响因素(变量选择篇)》一文中,我们已详细讲解了IBM SPSS Statistics多因素方差分析方法的变量选择以及相关的图选项、估计边际平均值设置。

本文将会重点讲解,多因素方差分析方法的事后多重比较及其检验结果。我们本次检验的是性别、工作年限对工资的影响是否有显著性。

图1:使用的数据

一、选项设置

在进行多方差分析的事后多重比较时,需满足等方差的假定。因此,在进行选项设置时,需将“齐性检验”勾选上。另外,一般情况下,都会勾选“描述统计”,以获取平均值、方差等统计数值。

对于显著性水平,一般保持0.05即可。

图2:选项设置

二、事后多重比较设置

接着,就可以打开事后多重比较选项,将性别、工作年限添加到事后检验中。

在假定等方差的情况下,常用的是LSD法,也就是最小显著性差异法,其检验敏锐度高,一些细微的差异都能检验出来。SNK检验与LSD检验相似,但检验结果更为保守,比较适用于两两比较。

图3:事后多重比较设置

三、数据解读

完成以上设置,运行检验。

如图4所示,从简单的平均值数值看到,随着工作年限的增加,工资的平均值也在增加,无论是男性还是女性的数据都表现出此规律,但男女性的工资似乎差异不大。

图4:平均值

接着,查看主体间效应检验。

修正模型的显著性数值为0.00<0.05,表明主体间效应具有显著性。从性别、工作年限、性别*工作年限的显著性数值看到,性别对工资没有显著性影响,而工作年限对工资有显著性影响,性别与工作年限的协同影响不显著。

图5:主体间效应检验

而从性别与工作年限的轮廓图看到,其线条呈现平行关系,表明性别与工作年限无交互关系。

图6:轮廓图

方差齐性检验,用于检验事后多重比较结果的有效性。在使用LSD(最小显著性差异法)检验时,需确保数据满足方差齐性的假设。

基于平均值的显著性数值为0.088>0.05,检验结果不显著,不能拒绝原假设,也就是检验各组中的方差相等。

图7:方差齐性检验

在方差齐性的前提下,查看LSD多重比较数据。

从显著性数值(均小于0.05)看到,工作年限3-4年与工作年限1-2的工资有显著性差异。

图8:多重比较

三、小结

综上所述,IBM SPSS Statistics的多因素方差分析,可用于检验多因素对因变量的影响是否有显著性,另外,还可以用于检验因素间的交互作用,并运用事后多重比较来检验因素各组中的差异。

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣