IBM SPSS Statistics 中文网站 > 使用技巧 > 如何进行SPSS多因素方差分析的检验方法设置与结果解读

如何进行SPSS多因素方差分析的检验方法设置与结果解读

发布时间:2021/01/13 10:51:54

《应用SPSS多因素方差分析,探索因变量的影响因素(变量选择篇)》一文中,我们已详细讲解了IBM SPSS Statistics多因素方差分析方法的变量选择以及相关的图选项、估计边际平均值设置。

本文将会重点讲解,多因素方差分析方法的事后多重比较及其检验结果。我们本次检验的是性别、工作年限对工资的影响是否有显著性。

图1:使用的数据

一、选项设置

在进行多方差分析的事后多重比较时,需满足等方差的假定。因此,在进行选项设置时,需将“齐性检验”勾选上。另外,一般情况下,都会勾选“描述统计”,以获取平均值、方差等统计数值。

对于显著性水平,一般保持0.05即可。

图2:选项设置

二、事后多重比较设置

接着,就可以打开事后多重比较选项,将性别、工作年限添加到事后检验中。

在假定等方差的情况下,常用的是LSD法,也就是最小显著性差异法,其检验敏锐度高,一些细微的差异都能检验出来。SNK检验与LSD检验相似,但检验结果更为保守,比较适用于两两比较。

图3:事后多重比较设置

三、数据解读

完成以上设置,运行检验。

如图4所示,从简单的平均值数值看到,随着工作年限的增加,工资的平均值也在增加,无论是男性还是女性的数据都表现出此规律,但男女性的工资似乎差异不大。

图4:平均值

接着,查看主体间效应检验。

修正模型的显著性数值为0.00<0.05,表明主体间效应具有显著性。从性别、工作年限、性别*工作年限的显著性数值看到,性别对工资没有显著性影响,而工作年限对工资有显著性影响,性别与工作年限的协同影响不显著。

图5:主体间效应检验

而从性别与工作年限的轮廓图看到,其线条呈现平行关系,表明性别与工作年限无交互关系。

图6:轮廓图

方差齐性检验,用于检验事后多重比较结果的有效性。在使用LSD(最小显著性差异法)检验时,需确保数据满足方差齐性的假设。

基于平均值的显著性数值为0.088>0.05,检验结果不显著,不能拒绝原假设,也就是检验各组中的方差相等。

图7:方差齐性检验

在方差齐性的前提下,查看LSD多重比较数据。

从显著性数值(均小于0.05)看到,工作年限3-4年与工作年限1-2的工资有显著性差异。

图8:多重比较

三、小结

综上所述,IBM SPSS Statistics的多因素方差分析,可用于检验多因素对因变量的影响是否有显著性,另外,还可以用于检验因素间的交互作用,并运用事后多重比较来检验因素各组中的差异。

作者:泽洋

标签:SPSS数据分析软件

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23