发布时间:2025-03-28 09: 00: 00
品牌型号:HP Laptop 15
软件版本:IBM SPSS Statistics27
系统:Windows 10
在实际工作当中,由于收集的变量之间存在比较强的相关关系,如果直接利用数据进行分析,会让模型变得复杂,甚至可能因为变量之间的多重共线性引起较大的误差;为此,我们可以通过主成分分析来进行操作,话不多说,接下来的内容来带大家了解SPSS主成分分析怎么做,SPSS主成分分析结果解读的方法。
一、SPSS主成分分析怎么做
首先我们举个例子方便大家进行理解,如下图所示,从下面的数据中我们可以看到各个学生的科目成绩,现在我们想知道影响这些学生综合成绩的主要因素是什么,应该该怎么办?那就应该进行主成分分析。
1、将数据导入至SPSS软件中,点击工具栏【分析】中的【描述统计】,再选择【描述】按钮,打开描述面板,将语文成绩、数学成绩、英语成绩、物理成绩、化学成绩等变量移动至变量框,并勾选【将标准值另存为变量】选项,这样我们就可以看到标准化后的变量了。
2、切换回数据视图界面,我们可以看到数据编辑界面新生成的变量,接着再利用因子分析功能来完成主成分分析,点击【分析】中的【降维】选项,点击其中的【因子】选项,打开因子分析面板。
3、在因子分析面板中,把左侧框中标准化后的变量移动至右侧的变量框中,详细如下图所示,再点击右侧的【描述】按钮,勾选统计矩阵中的单变量描述性、初始解选项以及相关性矩阵中的【系数】选项。
4、单击【继续】按钮返回因子分析对话框,再点击【确定】按钮,等待SPSS进行主成分分析并输出结果即可。
二、SPSS主成分分析结果解读
在SPSS的输出窗口中,我们可以看到根据设置生成的主成分分析结果表,这里有五个结果表,分别为描述统计、相关性矩阵、公因子方差、总方差解释以及成分矩阵。
1、图6为相关性矩阵表,从表格中,我们可以看到语文、数学、英语、化学成绩之间相关系数都很高,在0.985-0.999之间,说明这几科成绩相关性极强,物理的成绩相关系数在0.775-0.829之间,与其他科目成绩相比,相关性比较弱一些。
2、图7为成分矩阵表,从图中我们可以看出来化学成绩的数值最高,为0.995,这说明化学成绩在主成分中所占权重相对较大。
3、从总方差解释表中我们可以看出,主成分1最重要,它的初始特征值和提取载荷平方和中的总计均为4.663,方差百分比为 93.257%,累积百分比为93.257%,这说明第一个主成分解释了原始数据总方差的93.257%的差异。
以上就是关于SPSS主成分分析怎么做,SPSS主成分分析结果解读的相关介绍。通过使用SPSS对数据进行主成分分析,可以快速找到影响数据的主要因素,从而起到降维和数据简化的目的。想了解更多关于SPSS主成分分析的操作技巧,可以登录SPSS中文网站进行查询。
作者:EON
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS单尾检验怎么做 SPSS单尾检验p值与什么比较
单尾检验是统计学中较为常见的一种数据验证方法,用于判断样本数据与总体数值之间的差异关系,包括大于关系、小于关系和等于关系。今天,我就以“SPSS单尾检验怎么做,SPSS单尾检验p值与什么比较”这两个问题为例,带大家了解一下单尾检验的相关知识。...
阅读全文 >
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。...
阅读全文 >