SPSS > 使用技巧 > SPSS主成分分析怎么做 SPSS主成分分析结果解读

SPSS主成分分析怎么做 SPSS主成分分析结果解读

发布时间:2025-03-28 09: 00: 00

品牌型号:HP Laptop 15

软件版本:IBM SPSS Statistics27

系统:Windows 10

在实际工作当中,由于收集的变量之间存在比较强的相关关系,如果直接利用数据进行分析,会让模型变得复杂,甚至可能因为变量之间的多重共线性引起较大的误差;为此,我们可以通过主成分分析来进行操作,话不多说,接下来的内容来带大家了解SPSS主成分分析怎么做,SPSS主成分分析结果解读的方法。

一、SPSS主成分分析怎么做

首先我们举个例子方便大家进行理解,如下图所示,从下面的数据中我们可以看到各个学生的科目成绩,现在我们想知道影响这些学生综合成绩的主要因素是什么,应该该怎么办?那就应该进行主成分分析。

数据展示
图1:数据展示

1、将数据导入至SPSS软件中,点击工具栏【分析】中的【描述统计】,再选择【描述】按钮,打开描述面板,将语文成绩、数学成绩、英语成绩、物理成绩、化学成绩等变量移动至变量框,并勾选【将标准值另存为变量】选项,这样我们就可以看到标准化后的变量了。

描述对话框
图2:描述对话框

2、切换回数据视图界面,我们可以看到数据编辑界面新生成的变量,接着再利用因子分析功能来完成主成分分析,点击【分析】中的【降维】选项,点击其中的【因子】选项,打开因子分析面板。

降维
图3:降维

3、在因子分析面板中,把左侧框中标准化后的变量移动至右侧的变量框中,详细如下图所示,再点击右侧的【描述】按钮,勾选统计矩阵中的单变量描述性、初始解选项以及相关性矩阵中的【系数】选项。

因子分析面板
图4:因子分析面板

4、单击【继续】按钮返回因子分析对话框,再点击【确定】按钮,等待SPSS进行主成分分析并输出结果即可。

二、SPSS主成分分析结果解读

在SPSS的输出窗口中,我们可以看到根据设置生成的主成分分析结果表,这里有五个结果表,分别为描述统计、相关性矩阵、公因子方差、总方差解释以及成分矩阵。

分析结果表
图5:分析结果表

1、图6为相关性矩阵表,从表格中,我们可以看到语文、数学、英语、化学成绩之间相关系数都很高,在0.985-0.999之间,说明这几科成绩相关性极强,物理的成绩相关系数在0.775-0.829之间,与其他科目成绩相比,相关性比较弱一些。

相关性矩阵表
图6:相关性矩阵表

2、图7为成分矩阵表,从图中我们可以看出来化学成绩的数值最高,为0.995,这说明化学成绩在主成分中所占权重相对较大。

成分矩阵表
图7:成分矩阵表

3、从总方差解释表中我们可以看出,主成分1最重要,它的初始特征值和提取载荷平方和中的总计均为4.663,方差百分比为 93.257%,累积百分比为93.257%,这说明第一个主成分解释了原始数据总方差的93.257%的差异。

总方差解释表
图8:总方差解释表

以上就是关于SPSS主成分分析怎么做,SPSS主成分分析结果解读的相关介绍。通过使用SPSS对数据进行主成分分析,可以快速找到影响数据的主要因素,从而起到降维和数据简化的目的。想了解更多关于SPSS主成分分析的操作技巧,可以登录SPSS中文网站进行查询。

作者:EON

 

 

展开阅读全文

标签:二阶聚类分析数据分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
如何将问卷星中的数据导入SPSS 如何对问卷星的数据进行SPSS分析
如今无论是在职场还是大学校园,都经常会用到问卷调查。问卷调查可以帮我们快速收集用户数据,了解用户的需求、关注点,帮助我们从数据中分析出研究方向、需要如何改进。而问卷星是常用的用来收集用户问题的问卷调查软件之一。下面就来说说如何将问卷星中的数据导入SPSS,如何对问卷星的数据进行SPSS分析的相关内容。
2025-12-17
SPSS如何计算变量的回归系数 SPSS回归分析中如何加入控制变量
在回归分析的领域中,回归系数通常占据着重要的地位,回归系数的存在相当于让整个回归方程有了方向之分。在回归方程中表示了自变量对因变量影响程度大小的参数,回归系数的大小与自变量和因变量的变化密切相关。当我们需要计算变量的回归系数时,使用SPSS不仅可以计算变量的回归系数,还可以在回归分析中设置控制变量。接下来给大家介绍SPSS如何计算变量的回归系数,SPSS回归分析中如何加入控制变量的具体内容。
2025-12-17
SPSS怎么处理缺失值 SPSS缺失数据过多如何填补
在临床收集数据时,由于每个患者做的指标不同,影像学检查也存在差异,所以经常会遇到数据缺失的情况。SPSS作为一款专业的数据分析软件,它可以帮助我们分析出哪些指标有缺失值和大概占比多少,以及针对这些缺失数据,利用不同的方法进行填补。今天我们一起来探讨SPSS怎么处理缺失值,SPSS缺失数据过多如何填补的问题。
2025-12-17
SPSS拆分文件怎么操作 SPSS拆分文件后怎么分析
拆分文件是数据分析中一项不可缺少的操作。例如在一组数据变量中含有多个变量需要分析的时候,可以把这些分组变量拆分开来,进而分开进行处理,提高处理的效率。这里推荐大家使用SPSS来进行数据分析,它在满足日常数据处理任务的同时,兼顾输出数据分析报告,方便我们使用它进行科研报告、问卷调查等数据分析。接下来给大家介绍SPSS拆分文件怎么操作,SPSS拆分文件后怎么分析的具体内容。
2025-12-17
SPSS可以做结构方程模型吗 SPSS可以做验证性因子分析吗
在调查服务满意度、人口数据影响特征和学生幸福感等等涉及一些无法直接测量的概念时,就会进入结构方程模型的应用领域。结构方程模型,是一种适用于多变量的统计分析方法,简称SEM,它是一种用于分析“观察变量与潜变量”和“潜变量”之间关系结构的方法。验证性因子分析,简称为“CFA”,是一种验证结构效度分析方法,常在结构方程模型分析中使用,作用是验证观测变量与潜在变量之间的结构关系。接下来就围绕着“SPSS可以做结构方程模型吗,SPSS可以做验证性因子分析吗”这两个问题,给大家介绍一下在SPSS中如何做结构方程模型分析。
2025-12-17
SPSS怎么生成分组柱状图 SPSS柱状图标签显示不全怎么调整
图表可以用简单直观的方式揭示数据的变化情况,帮助我们认识和预测事物变化的方式。如何绘制合适的图表是我们融入社会的一项重要的技能,在包括但不限于科学研究、行政管理和商业统计等社会生活诸多领域充满了各式图表,SPSS便以其丰富多样的图表类型和便捷的操作方式被广泛使用。本文中我就给大家介绍一下关于SPSS怎么生成分组柱状图,SPSS柱状图标签显示不全怎么调整的相关内容。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: