SPSS > 使用技巧 > SPSS主成分分析怎么做 SPSS主成分分析结果解读

SPSS主成分分析怎么做 SPSS主成分分析结果解读

发布时间:2025-03-28 09: 00: 00

品牌型号:HP Laptop 15

软件版本:IBM SPSS Statistics27

系统:Windows 10

在实际工作当中,由于收集的变量之间存在比较强的相关关系,如果直接利用数据进行分析,会让模型变得复杂,甚至可能因为变量之间的多重共线性引起较大的误差;为此,我们可以通过主成分分析来进行操作,话不多说,接下来的内容来带大家了解SPSS主成分分析怎么做,SPSS主成分分析结果解读的方法。

一、SPSS主成分分析怎么做

首先我们举个例子方便大家进行理解,如下图所示,从下面的数据中我们可以看到各个学生的科目成绩,现在我们想知道影响这些学生综合成绩的主要因素是什么,应该该怎么办?那就应该进行主成分分析。

数据展示
图1:数据展示

1、将数据导入至SPSS软件中,点击工具栏【分析】中的【描述统计】,再选择【描述】按钮,打开描述面板,将语文成绩、数学成绩、英语成绩、物理成绩、化学成绩等变量移动至变量框,并勾选【将标准值另存为变量】选项,这样我们就可以看到标准化后的变量了。

描述对话框
图2:描述对话框

2、切换回数据视图界面,我们可以看到数据编辑界面新生成的变量,接着再利用因子分析功能来完成主成分分析,点击【分析】中的【降维】选项,点击其中的【因子】选项,打开因子分析面板。

降维
图3:降维

3、在因子分析面板中,把左侧框中标准化后的变量移动至右侧的变量框中,详细如下图所示,再点击右侧的【描述】按钮,勾选统计矩阵中的单变量描述性、初始解选项以及相关性矩阵中的【系数】选项。

因子分析面板
图4:因子分析面板

4、单击【继续】按钮返回因子分析对话框,再点击【确定】按钮,等待SPSS进行主成分分析并输出结果即可。

二、SPSS主成分分析结果解读

在SPSS的输出窗口中,我们可以看到根据设置生成的主成分分析结果表,这里有五个结果表,分别为描述统计、相关性矩阵、公因子方差、总方差解释以及成分矩阵。

分析结果表
图5:分析结果表

1、图6为相关性矩阵表,从表格中,我们可以看到语文、数学、英语、化学成绩之间相关系数都很高,在0.985-0.999之间,说明这几科成绩相关性极强,物理的成绩相关系数在0.775-0.829之间,与其他科目成绩相比,相关性比较弱一些。

相关性矩阵表
图6:相关性矩阵表

2、图7为成分矩阵表,从图中我们可以看出来化学成绩的数值最高,为0.995,这说明化学成绩在主成分中所占权重相对较大。

成分矩阵表
图7:成分矩阵表

3、从总方差解释表中我们可以看出,主成分1最重要,它的初始特征值和提取载荷平方和中的总计均为4.663,方差百分比为 93.257%,累积百分比为93.257%,这说明第一个主成分解释了原始数据总方差的93.257%的差异。

总方差解释表
图8:总方差解释表

以上就是关于SPSS主成分分析怎么做,SPSS主成分分析结果解读的相关介绍。通过使用SPSS对数据进行主成分分析,可以快速找到影响数据的主要因素,从而起到降维和数据简化的目的。想了解更多关于SPSS主成分分析的操作技巧,可以登录SPSS中文网站进行查询。

作者:EON

 

 

展开阅读全文

标签:二阶聚类分析数据分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS误差图怎么画 SPSS误差图怎么分析
我们在制作分析报告时,如果想要让数据更容易被人读懂,可以在报告里面插入一些图表。因为图表属于一种可视化工具,比如我们会用条形图对比不同变量的均值大小、用饼图对比不同成分的占比等等。不同的图表应用的情形会有不同,本文会教大家SPSS误差图怎么画,SPSS误差图怎么分析的相关内容。
2025-04-27
SPSS数据清洗怎么操作 SPSS数据清洗异常值是多少
在进行数据统计分析时,往往需要对数据集进行数据清洗,这时候就可以借助SPSS数据统计分析软件。在SPSS中可以通过多种方法对数据集进行清洗,像是多重插补方法、平均值方法、替换法等等。接下来给大家详细讲解有关SPSS数据清洗怎么操作,SPSS数据清洗异常值是多少的相关内容。
2025-04-27
SPSS趋势性检验步骤 SPSS趋势性检验如何分析结果
趋势性检验,是一种检验自变量与因变量的变化之间是否存在线性变化趋势的分析方法。我们可以简单理解为,趋势性检验就是一种研究变化趋势的方法,比如随时间的变化趋势等。这种分析方法在生物学领域应用得比较多,其中还会涉及到生物学阶梯、等级关系等概念。接下来,一起来学习下SPSS趋势性检验步骤以及SPSS趋势性检验如何分析结果的相关内容。
2025-04-27
SPSS分层卡方检验步骤 SPSS分层卡方检验结果解读
分层卡方检验是SPSS中常用的统计分析方法之一,常用来识别分类变量中的混杂因素并控制其影响。通过将数据按混杂因素分层后,分别在每一层内分析分类变量之间的关联性,从而排除混杂变量的干扰。接下来本文将来带大家了解SPSS分层卡方检验步骤,SPSS分层卡方检验结果解读的相关内容。
2025-04-24
SPSS逻辑回归怎么做 SPSS逻辑回归结果怎么看
在实际生活中我们会遇到客户是否产生购买行为、产品是否合格、学生是否通过能力考核这些典型的二分类问题,对于这些问题我们都可以用SPSS中的逻辑回归来轻松解决。今天我们就来分析一下SPSS逻辑回归怎么做,SPSS逻辑回归结果怎么看的相关内容。
2025-04-24
SPSS变量重构是什么 SPSS变量重构怎么做
SPSS作为一款强大的数据统计分析软件,在数据分析和数据统计上有着很多的功能,除了常见的一些数据分析方法外,SPSS还可以对已有数据进行结构重组,这就是SPSS的变量重构功能。接下来给大家详细讲解有关SPSS变量重构是什么,SPSS变量重构怎么做的相关内容。
2025-04-24

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: