SPSS > 常见问题 > SPSS K-means聚类分析怎么做 SPSS K-means聚类分析结果解读

SPSS K-means聚类分析怎么做 SPSS K-means聚类分析结果解读

发布时间:2025-07-31 10: 00: 00

品牌型号:联想ThinkBook

系统:windows10 64位旗舰版

软件版本:IBM SPSS Statistics 29.0

在数据分析领域,如果需要对数据进行组别或者集合的分类,我们可以使用SPSS的K-means聚类分析的方法,这属于质心的聚类算法,可以优化数据集合的形式和定义。本文以SPSS K-means聚类分析怎么做,SPSS K-means聚类分析结果解读这两个问题为例,带大家了解一下SPSS的K-means聚类分析的知识。

一、SPSS K-means聚类分析怎么做

K-means聚类分析指的是找到k个簇中心,使意向数据分配到最近的簇中心,每个聚类由一个中心向量表示。通过对连续性数值分配至最近的簇中心,我们确保每个样本与其所属类的均值距离之和最小。

1、下图是南方某首饰品牌热销耳饰的市场数据,包含耳饰产品的类型、单件长度、单件利润和销售量,品牌方想要根据以上的四个方面来对耳饰进行划分,初步想要划分成三个类别,根据类别来制定营销和推广策略。

耳饰产品数据
图1:耳饰产品数据

2、为了对耳饰产品进行分类,我们选择迭代与分类的方法,聚类数填为3,将产品类型作为个案依据,然后把耳饰产品的单件长度、产品销售量、单件利润放入K均值聚类分析的变量框。

聚类数和划分类别
图2:聚类数和划分类别

3、接下来进入聚类分析的保存页面,我们使保存新变量为聚类成员,且需要查看与聚类中心的距离的数值结果。

设置聚类成员
图3:设置聚类成员

4、在聚类分析的选项界面,我们默认如果存在缺失值,整体数据将成列排除个案,然后进行个案聚类、单因素分析、初始聚类中心的统计运算。

聚类信息的统计选项
图4:聚类信息的统计选项

二、SPSS K-means聚类分析结果解读

通过找到K-means聚类的功能按键、选择迭代分类方法、设置个案标注依据、保存聚类成员等上述步骤,我们得到聚类中心和ANOVA表来解读聚类分析的结果。聚类成员的数值表格显示聚类成员与中心之间的距离,ANOVA表显示划分类别是否有效。

1、在如下的迭代功能界面,我们在迭代次数输入20,默认收敛准则为0,根据迭代历史看到每次迭代过程聚类的平方和情况,如果迭代在几次之后稳定下来,表示数据模型找到相对稳定的解。

收敛准则为0
图5:收敛准则为0

2、在聚类成员的表格,蝴蝶花形状、晶蓝水滴、哑光圆面石、毛绒粉心坠、毛绒圆环、毛绒直线坠的耳饰属于聚类1,铜色多点线坠的耳饰属于聚类2,雾面红心坠、银丝直线坠、铜色直线坠、铜色圆环的耳饰属于聚类3。

不同款式的耳坠和耳环
图6:不同款式的耳坠和耳环

3、耳饰单件长度聚类均方为99.188,显著性数值小于0.001,耳饰销售量聚类均方为1240205156,显著性数值小于0.001,表示单件长度和销售量对耳饰的聚类产生影响。

单件利润对聚类不起作用
图7:单件利润对聚类不起作用

三、小结

以上就是PSS K-means聚类分析怎么做,SPSS K-means聚类分析结果解读的解答。为了优化数据集合的形式和定义,推荐使用SPSS的K-means聚类分析的方法。最后,也欢迎大家前往SPSS的中文网站,学习更多关于数据分析的操作技巧。

展开阅读全文

标签:快速聚类分析聚类分析SPSS聚类分析SPSS系统聚类分析SPSS聚类分析步骤

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: