SPSS > 常见问题 > SPSS探索性分析的作用 SPSS探索性分析是否服从正态分布检验

SPSS探索性分析的作用 SPSS探索性分析是否服从正态分布检验

发布时间:2025-07-28 10: 00: 00

品牌型号:联想ThinkBook

系统:windows10 64位旗舰版

软件版本:IBM SPSS Statistics 29.0

在数据分析领域,如果研究者处于数据收集和分析的初始阶段,繁杂数据尚未进行维度或者组别的划分,就可以使用SPSS探索性分析的方法来寻找共同变量维度。本文以SPSS探索性分析的作用,SPSS探索性分析是否服从正态分布检验这两个问题为例,带大家了解一下SPSS探索性分析的知识。

一、SPSS探索性分析的作用

一般来讲,探索性分析是借助少数几个因子维度来描述多个数据变量之间的关系,目的在于数据降维和识别变量之间的潜在关系,经常被用来探究问卷的多个测量题项是否可以归为几个共同的维度。

1、下图是对华南地区青年人群在受教育程度、媒介接触渠道、户外活动、人际关系等生活情况的调查问卷,我们以下列部分题项为例,展示一下如何进行SPSS探索性分析的方法操作和具体应用。

青年人群生活方式调查
图1:青年人群生活方式调查

2、案例数据涉及被调查人群的性别、年收入、政治面貌等基本情况,这里以代表青年群体生活情况的日常阅读、朋友聚会以及受教育信息为例,把您目前的最高教育水平、大学等级、过去一年阅读报纸频率、过去一年阅读杂志频率、与不住在一起的朋友见面频率、与朋友聚会频率这六个题项放入变量内容中。

代表青年生活情况的六个题项
图2:代表青年生活情况的六个题项

3、接下来进入因子分析的描述窗口,选择统计模块的【初始解】选项,再将相关性矩阵模块的系数、KMO和巴特利特球形度检验两个功能按键勾选,这样做是为了首先确认案例数据是否适合进行因子分析,如果KMO检验的相关数值过低,则不满足进行探索性分析的前提条件。

SPSS描述窗口的按键选择
图3:SPSS描述窗口的按键选择

4、然后我们把因子提取的方法设置为主成分,依然是进行相关性矩阵的分析,并且使统计表格显示未旋转因子解和碎石图。碎石图是根据特征值降序排序绘制的坡线图,检验标准是选取坡线突然大幅度起伏的因素。

设置特征值
图4:设置特征值

二、SPSS探索性分析是否服从正态分布检验

除了想要判断多个问卷题项可以归纳为几个共同维度,研究者通常需对问卷数据进行正态性检验,即查看变量数据是否服从正态分布的情况,常见方法包括直方图法、科尔莫戈罗夫检验法、夏皮罗—威尔克检验法。

1、按照上述步骤,我们得到华南地区青年人群部分调查数据的KMO检验结果,取样适切性量数为0.775,显著性数值小于0.05,表示案例数据可以进行因子分析,后续的因子分析结果具有一定的可靠性和准确性。

案例数据符合因子分析的标准
图5:案例数据符合因子分析的标准

2、下图表格的第三列指的是提取的共同估计值,可以作为筛选问卷题项是否合适的标准,如果提取列数值的共同度低于0.2,研究者需要考虑将相关题项剔除或者替代,并且重新进行变量共同维度的测量和分析。

提取列的共同度均大于0.7
图6:提取列的共同度均大于0.7

3、在总方差解释表格,我们通常只看特征值大于1的成分,下图显示有三个特征值分别为1.692、1.553、1.476的主成分,累计方差贡献率达到78.689%,表示三个主成分可以解释的总变化量达到78.689%。

累积数值大于60%
图7:累积数值大于60%

4、旋转因子是为了获取数据分析的简单结构,使每个问卷题项都能够归属于一个明确的主成分。下图数值结果显示,最高受教育程度和大学等级划定为成分2,载荷系数分别为0.877和0.876,过去一年阅读报纸频率和过去一年阅读杂志频率划定为成分1,载荷系数分别为0.918和0.917,与不住在一起的亲戚聚会和与朋友聚会划定为成分3,载荷系数均为0.866。

系数均大于0.8
图8:系数均大于0.8

三、小结

以上就是SPSS探索性分析的作用,SPSS探索性分析是否服从正态分布检验的解答。探索性分析可以用作判断问卷多个题项是否可以归为共同维度,进而帮助研究者高效梳理繁杂数据。最后,也欢迎大家前往SPSS的中文网站,学习更多关于数据分析的操作技巧。

 

展开阅读全文

标签:探索性分析统计分析SPSS正态性检验SPSS探索性因子分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: