SPSS > 使用技巧 > SPSS度量问卷可靠性及其结果改进

SPSS度量问卷可靠性及其结果改进

发布时间:2021-10-18 10: 53: 41

SPSS的度量可靠性分析,实际上就是常用的信度分析,用于检验问卷的可靠性。其检验可靠性的方法包括检验问卷的跨时间、跨形式与跨项目的一致性,根据不同的检验方法,运用不同模型,如Alpha模型、折半模型等。接下来,我们通过一个实例来详细学习下SPSS度量问卷可靠性及其结果改进。

一、数据准备

本文使用的是一组品牌评价的问卷,受访者根据所给的品牌给予1-9的评分。

图1:品牌认定数据
图1:品牌认定数据

二、可靠性分析参数设置

如图2所示,依次单击IBM SPSS Statistic的分析-刻度-可靠性分析选项。

图2:可靠性分析
图2:可靠性分析

如图3所示,在可靠性设置面板中,将受访者变量添加到“项”方框中,用于检验问卷的可靠性。

图3:项设置
图3:项设置

接着,在模型设置处选择Alpha模型。该模型是一种常用的信度检验模型,适用于态度类、评价类的问卷形式,其检验的是各个题目得分的一致性。

其他如平行、严格平行等模型,需要满足同一被访者回答两次相同问卷、或同一被访者在相隔一段时间再进行测试等前提,实际操作比较困难。

图4:密码类型
图4:密码类型

三、可靠性分析结果解读

运行Alpha模型检验问卷的信度。

如图5所示,从可靠性统计表格得出问卷的Alpha值为0.733,具有一定的信度,但仍有修改的空间。一般来说,Alpha值要达到0.8-0.9才能说明问卷信度非常好;如果处于0.7-0.8之间,说明信度尚可,但仍需要进一步修改;如果小于0.6,则信度不可接受。

图5:Alpha系数
图5:Alpha系数

四、提高可靠性

那么,有什么办法可提高问卷的可靠性呢?

如图6所示,我们可以通过计算“删除项后的标度”(在统计设置中勾选项目)来了解不同问卷条目对量表信度的影响。

图6:统计设置
图6:统计设置

如图7所示,在项总计统计表中,可观察到删除每一个项目后的Alpha值。在删除受访者5的数据后,问卷信度可升高至0.749。

图7:删除项后Alpha值
图7:删除项后Alpha值

为了测试项总计统计表的准确度,如图8所示,可在可靠性分析中拿掉“受访者5”的数据,检验准确度。

图8:删除受访者5变量
图8:删除受访者5变量

如图9所示,删除受访者5的数据后,Alpha值升高至0.749,与项总计统计表的数据一致。

图9:Alpha值
图9:Alpha值

五、小结

综上所述, 通过应用SPSS度量可靠性分析,可检验问卷、量表等数据的时间、形式、项目等一致性,从而得到该数据的信度评价。而通过应用“删除项后标度”分析,可快速找出一些影响整体数据信度的“坏”数据,以进一步优化数据。

作者:泽洋

展开阅读全文

标签:SPSSSPSS问卷SPSS可靠性分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: