SPSS > 使用技巧 > SPSS的K均值聚类、分层聚类、二阶聚类的区别

SPSS的K均值聚类、分层聚类、二阶聚类的区别

发布时间:2021-09-23 15: 14: 10

K均值聚类、分层聚类、二阶聚类是SPSS聚类分析中常用的三种聚类方法。K均值聚类使用的是欧式距离的测量方法;分层聚类是根据度量的距离远近,构建谱系分析;二阶聚类是利用距离测量得到分类树,然后再利用BIC或AIC准则判别最佳聚类。

除了以上聚类原理的不同外,三种聚类方法还有哪些不同点呢?接下来,我们从参数设置与结果解读两方面进行详细解读。

图1:二阶、K均值、系统聚类
图1:二阶、K均值、系统聚类

一、参数设置

K均值聚类仅可用于连续变量的聚类分析,因此,如图1所示,其参数设置面板仅提供了一个变量选项。另外,K均值聚类主要是采用了迭代计算的方法。

图2:K均值聚类参数设置
图2:K均值聚类参数设置

虽然系统聚类分析也仅提供了一个变量选项,但其变量选项可添加分类变量或连续变量。但要注意的是,单次只能分析同一种类型的变量,也就是说,不能将分类变量与连续变量同时添加到变量选项框,只能添加其中一种类型。

另外,与K均值聚类仅可分析个案聚类不同,系统聚类可分析个案或变量的聚类。

图3:系统聚类参数设置
图3:系统聚类参数设置

而且,系统聚类分析可指定解的范围。

图4:系统聚类解范围
图4:系统聚类解范围

相对于其他两种聚类方法,二阶聚类的变量选项更为自由,可同时添加分类与连续变量。

图5:二阶聚类参数设置
图5:二阶聚类参数设置

二、结果解读

从结果解读来看,K均值聚类可简单快速地得到最终聚类的中心,但由于其测量计算主要是依靠“直线式”的欧式距离,因此,对异常值较为敏感。

图6:K均值聚类中心
图6:K均值聚类中心

而不同于K均值聚类清晰而简单的聚类结果,系统聚类主要是依靠如图7所示的谱系图解读聚类结果。

通过在谱系图中绘制竖线并向左观察,可得到聚类数据以及其包含的个案信息。

图7:系统聚类谱系图
图7:系统聚类谱系图

二阶聚类分析除了能通过BIC或AIC准则获得最佳的聚类数目外,还可进一步得到聚类的质量评分。

图8:二阶聚类模型概要
图8:二阶聚类模型概要

以及通过聚类预测重要性、聚类特征图等得到影响聚类的重要变量,以及各个聚类的变量特征。

图9:二阶聚类输入重要性
图9:二阶聚类输入重要性

三、小结

综上所述,K均值聚类、分层聚类、二阶聚类这三种SPSS的聚类方法各具优点与缺点。

K均值聚类简单快速,但无法分析分类变量、容易受异常值影响;系统聚类,可对个案与变量聚类,可对连续与分类变量聚类,但依靠谱系图分析,当数据量大时,分析速度慢;二阶聚类,自动程度高,可同时分析分类与连续变量,但容易受到分类变量的影响。

作者:泽洋

展开阅读全文

标签:SPSSK均值聚类

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14
SPSS残差正态怎样检验 SPSS残差正态QQ图应如何判读
每当我们在对采集的数据样本进行回归分析或者方差检验的时候,都需要遵守数据检验的一个前提:模型的残差需要服从近似正态分布的规律。所以说残差的正态分布相当于整个数据样本的底座和基石,没有正态分布的规律,就无法进行后续的正态检验和分析。而在使用SPSS进行残差正态分析的时候,同样会面临如何检验以及判读QQ图的情况。下面给大家介绍SPSS残差正态怎样检验,SPSS残差正态QQ图应如何判读的具体内容。
2026-01-14
SPSS曲线回归分析的基本原理 SPSS曲线回归分析结果解读
我们在对一组数据样本进行分析的时候,曲线回归分析是其中不可缺少的一个环节。曲线回归分析作为数据分析中的一项重要操作,主要在评估数据样本之间的关联度以及相互关系时有着广泛应用,这样可以得到数据样本的整体变化趋势以及评估未来的数据发展周期(例如分析销售额和营销成本之间的关系)。而曲线回归的结果对数据样本测算同样有着重要意义,下面以SPSS为例,给大家介绍SPSS曲线回归分析的基本原理,SPSS曲线回归分析结果解读的具体内容。
2026-01-08
SPSS怎么导出结果为Excel SPSS表格导出后乱码怎么办
SPSS既能够帮助我们进行专业的数据分析(包含了回归分析、线性模型分析和缺失值分析等),又可以把数据分析后得到的报告结果进行保存或导出,便于数据分析结果的引用。下面就以SPSS为例,向大家介绍SPSS怎么导出结果为Excel,SPSS表格导出后乱码怎么办的具体内容。
2026-01-08
SPSS怎么进行描述性统计分析 SPSS均值标准差计算步骤
在统计学当中,描述性分析主要用来对调查样本总体的数据进行相关描述性质的研究(比如用图形的方式描述分析)。而在进行描述性分析的时候,我经常会用到SPSS数据分析软件,这款软件给我提供了许多数据分析的帮助。接下来给大家介绍SPSS怎么进行描述性统计分析,SPSS均值标准差计算步骤的具体内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: