IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS的K均值聚类、分层聚类、二阶聚类的区别

SPSS的K均值聚类、分层聚类、二阶聚类的区别

发布时间:2021/09/23 15:14:10

K均值聚类、分层聚类、二阶聚类是SPSS聚类分析中常用的三种聚类方法。K均值聚类使用的是欧式距离的测量方法;分层聚类是根据度量的距离远近,构建谱系分析;二阶聚类是利用距离测量得到分类树,然后再利用BIC或AIC准则判别最佳聚类。

除了以上聚类原理的不同外,三种聚类方法还有哪些不同点呢?接下来,我们从参数设置与结果解读两方面进行详细解读。

图1:二阶、K均值、系统聚类
图1:二阶、K均值、系统聚类

一、参数设置

K均值聚类仅可用于连续变量的聚类分析,因此,如图1所示,其参数设置面板仅提供了一个变量选项。另外,K均值聚类主要是采用了迭代计算的方法。

图2:K均值聚类参数设置
图2:K均值聚类参数设置

虽然系统聚类分析也仅提供了一个变量选项,但其变量选项可添加分类变量或连续变量。但要注意的是,单次只能分析同一种类型的变量,也就是说,不能将分类变量与连续变量同时添加到变量选项框,只能添加其中一种类型。

另外,与K均值聚类仅可分析个案聚类不同,系统聚类可分析个案或变量的聚类。

图3:系统聚类参数设置
图3:系统聚类参数设置

而且,系统聚类分析可指定解的范围。

图4:系统聚类解范围
图4:系统聚类解范围

相对于其他两种聚类方法,二阶聚类的变量选项更为自由,可同时添加分类与连续变量。

图5:二阶聚类参数设置
图5:二阶聚类参数设置

二、结果解读

从结果解读来看,K均值聚类可简单快速地得到最终聚类的中心,但由于其测量计算主要是依靠“直线式”的欧式距离,因此,对异常值较为敏感。

图6:K均值聚类中心
图6:K均值聚类中心

而不同于K均值聚类清晰而简单的聚类结果,系统聚类主要是依靠如图7所示的谱系图解读聚类结果。

通过在谱系图中绘制竖线并向左观察,可得到聚类数据以及其包含的个案信息。

图7:系统聚类谱系图
图7:系统聚类谱系图

二阶聚类分析除了能通过BIC或AIC准则获得最佳的聚类数目外,还可进一步得到聚类的质量评分。

图8:二阶聚类模型概要
图8:二阶聚类模型概要

以及通过聚类预测重要性、聚类特征图等得到影响聚类的重要变量,以及各个聚类的变量特征。

图9:二阶聚类输入重要性
图9:二阶聚类输入重要性

三、小结

综上所述,K均值聚类、分层聚类、二阶聚类这三种SPSS的聚类方法各具优点与缺点。

K均值聚类简单快速,但无法分析分类变量、容易受异常值影响;系统聚类,可对个案与变量聚类,可对连续与分类变量聚类,但依靠谱系图分析,当数据量大时,分析速度慢;二阶聚类,自动程度高,可同时分析分类与连续变量,但容易受到分类变量的影响。

作者:泽洋

标签:SPSSK均值聚类

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07