IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS的K均值聚类、分层聚类、二阶聚类的区别

SPSS的K均值聚类、分层聚类、二阶聚类的区别

发布时间:2021-09-23 15: 14: 10

K均值聚类、分层聚类、二阶聚类是SPSS聚类分析中常用的三种聚类方法。K均值聚类使用的是欧式距离的测量方法;分层聚类是根据度量的距离远近,构建谱系分析;二阶聚类是利用距离测量得到分类树,然后再利用BIC或AIC准则判别最佳聚类。

除了以上聚类原理的不同外,三种聚类方法还有哪些不同点呢?接下来,我们从参数设置与结果解读两方面进行详细解读。

图1:二阶、K均值、系统聚类
图1:二阶、K均值、系统聚类

一、参数设置

K均值聚类仅可用于连续变量的聚类分析,因此,如图1所示,其参数设置面板仅提供了一个变量选项。另外,K均值聚类主要是采用了迭代计算的方法。

图2:K均值聚类参数设置
图2:K均值聚类参数设置

虽然系统聚类分析也仅提供了一个变量选项,但其变量选项可添加分类变量或连续变量。但要注意的是,单次只能分析同一种类型的变量,也就是说,不能将分类变量与连续变量同时添加到变量选项框,只能添加其中一种类型。

另外,与K均值聚类仅可分析个案聚类不同,系统聚类可分析个案或变量的聚类。

图3:系统聚类参数设置
图3:系统聚类参数设置

而且,系统聚类分析可指定解的范围。

图4:系统聚类解范围
图4:系统聚类解范围

相对于其他两种聚类方法,二阶聚类的变量选项更为自由,可同时添加分类与连续变量。

图5:二阶聚类参数设置
图5:二阶聚类参数设置

二、结果解读

从结果解读来看,K均值聚类可简单快速地得到最终聚类的中心,但由于其测量计算主要是依靠“直线式”的欧式距离,因此,对异常值较为敏感。

图6:K均值聚类中心
图6:K均值聚类中心

而不同于K均值聚类清晰而简单的聚类结果,系统聚类主要是依靠如图7所示的谱系图解读聚类结果。

通过在谱系图中绘制竖线并向左观察,可得到聚类数据以及其包含的个案信息。

图7:系统聚类谱系图
图7:系统聚类谱系图

二阶聚类分析除了能通过BIC或AIC准则获得最佳的聚类数目外,还可进一步得到聚类的质量评分。

图8:二阶聚类模型概要
图8:二阶聚类模型概要

以及通过聚类预测重要性、聚类特征图等得到影响聚类的重要变量,以及各个聚类的变量特征。

图9:二阶聚类输入重要性
图9:二阶聚类输入重要性

三、小结

综上所述,K均值聚类、分层聚类、二阶聚类这三种SPSS的聚类方法各具优点与缺点。

K均值聚类简单快速,但无法分析分类变量、容易受异常值影响;系统聚类,可对个案与变量聚类,可对连续与分类变量聚类,但依靠谱系图分析,当数据量大时,分析速度慢;二阶聚类,自动程度高,可同时分析分类与连续变量,但容易受到分类变量的影响。

作者:泽洋

展开阅读全文

标签:SPSSK均值聚类

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
SPSS项目分析怎么做 SPSS项目分析包括哪些方面
项目分析也被称作区分度分析,主要用于探究一个题项是否有存在的必要,是分析对于一个题项在有人给出高分时是否有人给出低分,简而言之就是探究高低分的受试者在不同题项的差异。那么SPSS项目分析怎么做,SPSS项目分析包括哪些方面呢?下面为大家详细介绍一下相关内容。
2024-03-01
SPSS三组数据计算p值 SPSS三组数据相关性分析步骤
在统计学和数据分析领域,SPSS是一个强大而广泛使用的工具,特别是在处理大量数据和进行复杂分析时。本文将重点介绍SPSS中如何进行三组数据的p值计算和相关性分析,为研究人员提供一种详细的步骤来解释他们的研究结果。下面我们就来看看SPSS三组数据计算p值,SPSS三组数据相关性分析步骤的相关内容。
2024-02-21
SPSS窗口怎么缩小 SPSS窗口怎么放大
在使用SPSS时,许多用户可能会遇到调整SPSS窗口大小的问题。不同的屏幕分辨率和个人喜好可能导致SPSS窗口显得过大或过小,影响到数据分析的效率和舒适度。下面我们来看看SPSS窗口怎么缩小,SPSS窗口怎么放大的相关内容。
2024-02-07
SPSS结果输出窗口怎么打开 SPSS结果输出窗口不显示
在使用SPSS进行数据分析时,结果输出窗口是一个至关重要的工具。然而,有时用户可能会遇到一些问题,其中之一就是结果输出窗口无法显示的情况。下面我们就来看看SpSS结果输出窗口怎么打开,SPSS结果输出窗口不显示的内容。
2024-02-07
spss曲线估计如何得出公式 spss曲线估计结果怎么看
曲线估计或称为回归分析,是寻求因变量和自变量之间定量关系的统计分析方法。根据方程的类型不同,可分为线性回归或非线性回归。根据自变量的数目,可以分为一元回归分析或多元回归分析。回归分析需要进行诸多统计学检验,本文不介绍这部分内容,大家可以登录IBM SPSS Statistics中文网站学习,本文主要向大家介绍求解回归曲线的方法。关于SPSS曲线估计如何得出公式,SPSS曲线估计结果怎么看,本文借助实例,向大家作简单介绍。
2024-02-07
SPSS相关性表格怎么分析 SPSS相关性表格怎么导出
IBM SPSS Statistics软件可以用于数据分析,制作相关性表格。将SPSS软件和excel软件结合使用可以得到更好的效果,使用excel软件对表格进行美化,SPSS软件可以更高效准确对数据分析。下面将为大家讲一讲有关SPSS相关性表格怎么分析,SPSS相关性表格怎么导出的内容。
2024-02-07

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: