IBM SPSS Statistics 中文网站 > 使用技巧 > IBM SPSS Statistics中分层聚类法的实际应用

IBM SPSS Statistics中分层聚类法的实际应用

发布时间:2021-09-22 16: 08: 52

IBM SPSS Statistics中的分层聚类法,也称作系统聚类法,是按照度量数据距离的远近,对预先设定的分类范围进行聚类的分析方法。其优点是可设定分类的范围、可处理分类变量与连续变量、可选择的数据距离计算方法多等。

但需要注意的是,分层聚类法无法同时处理两种变量类型,即单次分析只能在同一种变量类型中进行。接下来,我们通过实例具体演示下操作方法。

一、数据准备

本文使用到的是一组包含连续变量(销售额、销售量等)与分类变量(店铺类型、星级等)的店铺数据。

图1:店铺数据
图1:店铺数据

二、系统聚类参数设置

如图2所示,依次打开SPSS的分类-系统聚类分析。

图2:系统聚类
图2:系统聚类

如图3所示,SPSS的系统聚类可进行个案与变量的聚类分析。本例选择个案的系统聚类分析。

图3:设置面板
图3:设置面板

系统聚类单次只可分析一种变量类型,如图4所示,本例进行的是客流量、销售额、销售量的连续型变量系统聚类分析,以账号作为标注依据。

图4:变量设置
图4:变量设置

在统计设置中,如图5所示,勾选“解的范围”,并将范围设定为2-5。

图5:统计设置
图5:统计设置

在图设置中,勾选“谱系图”选项,以观察聚类的过程。

图6:图设置
图6:图设置

在计算方法中,根据连续变量使用欧氏距离法,分类变量使用计数型卡方测量法的原则,设置区间的平方欧式距离法。

图7:方法设置
图7:方法设置

最后,在保存设置中,保存“解的范围”,以在数据表中生成解范围的新变量。

图8:解的范围
图8:解的范围

三、结果解读

运行分析后,返回到数据集,如图9所示,在原数据集的末端生成了新的变量,分别展示的是解在2-5范围时,个案所属的聚类。

图9:生成新变量
图9:生成新变量

本次系统聚类分析了23个个案,从集中计划表看到,在第5阶段,15与16聚合为一类,15在第4个阶段中出现了,16则是第一次出现,因此在聚类中分别记为“4”与“0”。

在进行22个阶段后,所有个案完成聚类。

图10:集中计划
图10:集中计划

如图11所示,在谱系图中画红色竖线并向左观察,可将个案分为三大类。当然,也可以移动红色竖线,将个案分为两大类、四大类、五大类,并观察其个案的组成。

图11:谱系图
图11:谱系图

四、小结

综上所述,SPSS分层聚类分析可进行连续型与分类型变量的聚类分析,并设定解的范围,使得数据在预设的范围内进行聚类。

但另一方面来说,分层聚类主要是依靠图形,如谱系图进行聚类结果的输出,因此,如果个案数目过大,将不利于结果的观察。

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics分层聚类法

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: