SPSS > 使用技巧 > SPSS参数估计值是什么意思 SPSS参数估计步骤

SPSS参数估计值是什么意思 SPSS参数估计步骤

发布时间:2022-05-20 14: 27: 53

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

SPSS参数估计值是什么意思?SPSS参数估计量是使用样本数据通过参数估计方法计算出来的统计量的值。本文会运用实例详细SPSS参数估计步骤并对spss的运算结果进行解读,并根据估计量建立回归方程。

一、SPSS参数估计值是什么意思

SPSS参数估计值是什么意思?首先理解下什么是参数估计,参数估计是一种统计推断方法,是通过抽取样本来计算统计量,从而估计出总体未知参数的方法,其运算的方法包括最小二乘估计(线性参数估计)、最大似然估计法、贝叶斯估计法等。

而spss参数估计值,就是运用参数估计的方法,根据样本数据计算出来的估计量(统计量)的值。

以简单的一元线性回归分析为例,在满足残差正态分布、残差无自相关,方差齐性等假设后,进行回归方程的参数估计。回归方程自变量与常量系数显著性<0.05,说明回归系数显著,根据计算所得的参数估计值,可写成一元线性回归方程为y=0.463x+0.51。

图1:线性回归方程参数估计
图1:线性回归方程参数估计

 

二、SPSS参数估计步骤

接下来,我们使用一个实际的例子,具体演示下spss参数估计步骤。

第一步,准备数据,确定研究问题。

使用一组居民消费价格指数(以下简称CPI)与消费者信心指数(以下简称CCI)的样本数据,由于CPI对CCI的影响具有滞后性,因此将CCI数据滞后一期运算。

图2:CPI与CCI数据
图2:CPI与CCI数据

 

第二步,观察数据分布,确定参数估计的方法。

如果事先不清楚样本数据的分布情况与符合的模型类型,可先使用spss的图表创建器,绘制样本数据的散点图。

如图3所示,从CPT与CCI(滞后一期)数据的散点图看到,CPT与CCI(滞后一期)之间不存在明显的线性相关关系,因此无法使用线性回归分析法,更倾向使用曲线估计法。

图3:CPI与CCI散点图
图3:CPI与CCI散点图

 

第三步,使用spss曲线估计分析方法

假设CPT与CCI(滞后一期)之间符合曲线回归模型后,应用spss的曲线估计分析法进行回归模型的参数估计。

如图4所示,依次点击spss的分析-回归-曲线估算选项。

图4:曲线估计
图4:曲线估计

 

如图5所示,在spss曲线估算设置中,以“CPI对CCI(滞后一期)的影响”为研究目的,将“CCI(滞后一期)”选入因变量列表框,将“CPI”选入独立变量列表框,将“月份”选入个案标签列表框。

由于我们暂时不清楚“CPI对CCI(滞后一期)的影响”符合哪种曲线模型,可依次勾选可能符合的模型类型,比如本例勾选了“线性”、“二次”、“复合”、“增长”、“对数”、“三次”等模型类型。

图5:变量及分析模型
图5:变量及分析模型

 

三、SPSS参数估计结果解读

spss曲线估算的变量、模型、统计量设置都比较简单,那么,怎么解读其参数估计的结果呢?

首先,我们简单回顾下数据及曲线估计的设置,如图6所示,本例进行的是因变量为“CCI(滞后一期)”,自变量为“CCI”的曲线估计,以月份作为观测值的个案标注,会进行线性、对数、二次等7种方程的估算。

图6:模型描述
图6:模型描述

 

接下来,我们来看一下估算结果。

如图7所示,SPSS的曲线估计结果很简单清楚,可在同一个表上比较模型的R方、显著性数值,并查看方程对应的参数估算值。

从数据看到,三次方程的显著性为0.002<0.05,方程检验结果显著,R方为0.528,拟合优度尚可。而其他的回归方程显著性均>0.05,检验结果不显著,R方数值也很低,因此,更倾向采用三次回归方程。

根据参数估计值,可创建三次回归方程:y=6761.72-97.494x+0.003x3

图7:参数估计量
图7:参数估计量

 

四、小结

以上就是关于SPSS参数估计值是什么意思,SPSS参数估计步骤的相关内容。参数估计值是通过样本数据去估算总体未知参数的值,SPSS的参数估计值可从运算表格中轻松获得,并可通过显著性数值判断参数估计值是否具有统计学意义。

 

作者:泽洋

展开阅读全文

标签:IBM SPSS StatisticsspssIBM SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存曲线数据怎么录入 SPSS怎么做生存曲线
在数据分析的领域中,生存分析一直是一个重要的概念,它在生物医学领域有着广泛的应用。而在SPSS中录入生存曲线数据,是我们进行生存分析的第一步,也是关键的一步,生存曲线的数据与后续的数据分析有着重要的关联。SPSS软件在其中可以帮助我们快速进行数据分析和曲线绘制,接下来给大家介绍SPSS生存曲线数据怎么录入,SPSS怎么做生存曲线的具体内容。
2025-11-25
SPSS如何处理缺失值 SPSS数据清理与替换方法
每当我们需要处理一组数据的缺失值时,就需要用到专业的数据分析软件。在数据分析软件的这个领域中,SPSS既能够帮助我们处理数据样本的缺失值,还可以针对数据的缺失值对样本进行整体替换与填补。接下来给大家介绍SPSS如何处理缺失值,SPSS数据清理与替换方法的具体内容。
2025-11-25
SPSS多层线性模型如何构建 SPSS多层线性模型层级变量设置
每当在进行数据分析时,许多小伙伴可能都会遇到构建多层线性模型的情况。构建多层线性模型能扩大已测量的数据样本,使数据涵盖更多内容,进而更加有说服力。而在进行多层线性模型构建时,一款好用的数据分析软件是不可缺少的,这里给大家介绍我自己常用的SPSS数据分析软件,同时以它为例向大家介绍SPSS多层线性模型如何构建,SPSS多层线性模型层级变量设置的具体内容。
2025-11-25
SPSS怎样进行聚类分析 SPSS聚类中心不稳定怎么解决
对于经常需要与数据分析打交道的小伙伴来说,想必对聚类分析这一分析操作肯定是不陌生的。聚类分析指的是收集相似的数据样本,并在相似数据样本的基础之上收集信息来进行分类,下面以SPSS为例,向大家介绍SPSS怎样进行聚类分析,SPSS聚类中心不稳定怎么解决的具体内容。
2025-11-25
SPSS怎么绘制柱状图 SPSS图表编辑器使用技巧
由于数据分析领域经常需要庞大的数据样本,所以将数据图像化便是其中的一项重要任务。因此绘制数据分析图便成为了其中的关键操作。SPSS作为一款专业的数据分析软件,不仅可以用它来处理日常的各种数据分析内容,还能够完成数据图像的绘制和图表的编译。接下来给大家介绍SPSS怎么绘制柱状图,SPSS图表编辑器使用技巧的具体内容。
2025-11-25
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: