发布时间:2025-04-17 10: 05: 00
品牌型号:联想ThinkBook
系统:windows10 64位旗舰版
软件版本:IBM SPSS Statistics 29.0
在实验数据测量和分析方面,SPSS的roc曲线用途广泛。当需要研究定量指标对某疾病诊断价值,我们可以运用roc曲线的绘制来测算某指标的分类,有助于促进诊断效果的优化。今天,我们以SPSS如何计算占比,SPSS如何计算roc曲线的阈值这两个问题为例,带大家了解一下SPSS关于roc曲线的知识。
一、SPSS如何计算占比
SPSS的roc曲线图是反映敏感度和特异性之间关系的曲线,auc曲线则是roc曲线下的面积,roc曲线和auc常用于分析和评估实验数据,评判预测相关数据的准确率情况。
1、我们将测试肺癌指标的医药品数值作为案例数据,根据下图所示的数据集进行roc曲线的绘制,然后根据测试结果来进行下一步的计算占比。
2、当绘制出roc曲线之后,会得到下图所示的曲线坐标结果,第一列为通过曲线坐标筛选出最优截断值、最大约登指数以及和敏感度、特异性的相关值。
3、约登指数为敏感度值减去特异性值,特异性为1减去1-特异性,由此得出之后计算占比用到的敏感度值和特异性值,再根据上述SPSS的roc曲线结果来加以测算。
4、之后我们可以计算出敏感度和特异性各自在测量题项方面的占比,在大小指标上,敏感度占比86.3%,特异性占比90.3%,在检验指标上,敏感度占比74%,特异性占比86.7%。
二、SPSS如何计算roc曲线的阈值
roc曲线全程为被测试方的特征曲线,主要用于评价分类变量反映检查结果,而roc曲线下面积auc数值越大,说明预测准确度越高,反之说明预测准确度越低。接下来展示一下SPSS如何计算roc曲线的阈值的操作。
1、找到SPSS数据编辑器的【分析】栏,点击【分类】的【ROC曲线】选项,进入绘制roc曲线的功能设置模块。
2、将测试肺癌的结果数据移动到【状态变量】,状态变量值设为1,再将检验指标和cm(大小)数据项移动到【检验变量】,在【显示】中将如图所示的四项全部勾选,完成roc曲线坐标的设置。
3、按照上述步骤,我们在SPSS输出页面得到了roc曲线图,其中红色线代表cm(大小),蓝色线代表检验指标,绿色线代表参考线,可以看到不同数据在具体坐标的呈现情况。
4、根据如下的曲线下方区域结果,cm(大小)的auc值>0.9,证明该项预测诊断价值高,此种情况较好,而检验指标auc值<0.5表示无效测能。
三、小结
以上就是SPSS如何计算占比,SPSS如何计算roc曲线的阈值的解答。如果采集了医学数据进行预测,建议使用SPSS的roc曲线绘制来判断某些因素对某种疾病检验是否有诊断价值,可以提升数据测算和预判的效率和精确度。最后,也欢迎大家前往SPSS的中文网站,学习更多关于数据分析的操作技巧。
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS数字和字符串的区别 SPSS数字和数值一样吗
常规意义上我们理解的数据,可能只是各式各样的数字,但实际情况下,数值、文字、比值、区间等等,都囊括在数据分析工作的范围之内。今天我就以SPSS数字和字符串的区别,SPSS数据和数值一样吗这两个问题为例,来向大家讲解一下SPSS中不同变量类型之间的差别。...
阅读全文 >
SPSS输出结果怎么保存为Word SPSS输出结果怎么保留四位小数
SPSS数据统计软件是一款受众非常广的数据统计分析软件,无论是学生、专业的统计人员,还是研究人员都喜欢使用SPSS进行数据统计分析,在完成数据统计之后,直接将分析结果撰写在论文或者学术报告上,使用起来非常的方便。下面给大家介绍的是有关SPSS输出结果怎么保存为Word,SPSS输出结果怎么保留四位小数的内容。...
阅读全文 >
SPSS的缺失值有几种情况表示 SPSS数据缺失值达33%怎么处理
在数据统计分析中样本数据的准确性,是确保统计分析结果是否精准的一个重要依据,有些统计结果之所以不理想,就是因为样本数据中存在异常值,常见的异常值就是缺失值,在很多样本数据集中或多或少都会有一些缺失值。为了让小伙伴对缺失值有更深入的了解,下面给大家详细讲解有关SPSS的缺失值有几种情况表示,SPSS数据缺失值达33%怎么处理的相关内容。...
阅读全文 >
SPSS变量重构是什么 SPSS变量重构怎么做
SPSS作为一款强大的数据统计分析软件,在数据分析和数据统计上有着很多的功能,除了常见的一些数据分析方法外,SPSS还可以对已有数据进行结构重组,这就是SPSS的变量重构功能。接下来给大家详细讲解有关SPSS变量重构是什么,SPSS变量重构怎么做的相关内容。...
阅读全文 >