SPSS > 使用技巧 > SPSS如何计算占比 SPSS如何计算roc曲线的阈值

SPSS如何计算占比 SPSS如何计算roc曲线的阈值

发布时间:2025-04-17 10: 05: 00

品牌型号:联想ThinkBook

系统:windows10 64位旗舰版

软件版本:IBM SPSS Statistics 29.0

在实验数据测量和分析方面,SPSS的roc曲线用途广泛。当需要研究定量指标对某疾病诊断价值,我们可以运用roc曲线的绘制来测算某指标的分类,有助于促进诊断效果的优化。今天,我们以SPSS如何计算占比,SPSS如何计算roc曲线的阈值这两个问题为例,带大家了解一下SPSS关于roc曲线的知识。

一、SPSS如何计算占比

SPSS的roc曲线图是反映敏感度和特异性之间关系的曲线,auc曲线则是roc曲线下的面积,roc曲线和auc常用于分析和评估实验数据,评判预测相关数据的准确率情况。

1、我们将测试肺癌指标的医药品数值作为案例数据,根据下图所示的数据集进行roc曲线的绘制,然后根据测试结果来进行下一步的计算占比。

测试肺癌的实验品数据
图1:测试肺癌的实验品数据

2、当绘制出roc曲线之后,会得到下图所示的曲线坐标结果,第一列为通过曲线坐标筛选出最优截断值、最大约登指数以及和敏感度、特异性的相关值。

案例数据roc曲线坐标结果
图2:案例数据roc曲线坐标结果

3、约登指数为敏感度值减去特异性值,特异性为1减去1-特异性,由此得出之后计算占比用到的敏感度值和特异性值,再根据上述SPSS的roc曲线结果来加以测算。

根据roc曲线结果计算出敏感度和特异性值
图3:根据roc曲线结果计算出敏感度和特异性值

4、之后我们可以计算出敏感度和特异性各自在测量题项方面的占比,在大小指标上,敏感度占比86.3%,特异性占比90.3%,在检验指标上,敏感度占比74%,特异性占比86.7%。

运用SPSS绘图结果计算占比
图4:运用SPSS绘图结果计算占比

二、SPSS如何计算roc曲线的阈值

roc曲线全程为被测试方的特征曲线,主要用于评价分类变量反映检查结果,而roc曲线下面积auc数值越大,说明预测准确度越高,反之说明预测准确度越低。接下来展示一下SPSS如何计算roc曲线的阈值的操作。

1、找到SPSS数据编辑器的【分析】栏,点击【分类】的【ROC曲线】选项,进入绘制roc曲线的功能设置模块。

SPSS的roc曲线绘制
图5:SPSS的roc曲线绘制

2、将测试肺癌的结果数据移动到【状态变量】,状态变量值设为1,再将检验指标和cm(大小)数据项移动到【检验变量】,在【显示】中将如图所示的四项全部勾选,完成roc曲线坐标的设置。

roc曲线的变量设置和显示设置
图6:roc曲线的变量设置和显示设置

3、按照上述步骤,我们在SPSS输出页面得到了roc曲线图,其中红色线代表cm(大小),蓝色线代表检验指标,绿色线代表参考线,可以看到不同数据在具体坐标的呈现情况。

案例数据检验指标和cm(大小)的roc曲线图
图7:案例数据检验指标和cm(大小)的roc曲线图

4、根据如下的曲线下方区域结果,cm(大小)的auc值>0.9,证明该项预测诊断价值高,此种情况较好,而检验指标auc值<0.5表示无效测能。

案例数据auc值
图8:案例数据auc值

三、小结

以上就是SPSS如何计算占比,SPSS如何计算roc曲线的阈值的解答。如果采集了医学数据进行预测,建议使用SPSS的roc曲线绘制来判断某些因素对某种疾病检验是否有诊断价值,可以提升数据测算和预判的效率和精确度。最后,也欢迎大家前往SPSS的中文网站,学习更多关于数据分析的操作技巧。

展开阅读全文

标签:SPSSIBM SPSS Statistics

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS因子和协变量的区别和联系 SPSS因子和协变量怎么选
在SPSS数据统计分析方法中,回归分析是比较常用到的数据分析方法,其中多元 Logistic 回归分析是较为复杂的一种分析方法,因为其中包含了因子、协变量、因变量、自变量等多个变量,在进行分析的时候,需要区分好这些变量,接下来重点给大家讲解,SPSS因子和协变量的区别和联系,SPSS因子和协变量怎么选。
2025-05-08
SPSS因子载荷值是哪个 SPSS因子载荷系数要大于多少
如果我们研究的问题里面有很多的影响因素,而且每个因素都好像很重要,无法剔除其中的一些元素。在这种情况下,我们常常会引入因子分析的研究方法,因子分析是一种降维的方法,可以将一些相似的元素总结为共性因子,这样我们就能将多个因素减少为少数几个因素。本文会给大家介绍SPSS因子载荷值是哪个,SPSS因子载荷系数要大于多少的相关内容,感兴趣的小伙伴不容错过。
2025-05-08
SPSS清洗数据是什么意思 SPSS清洗数据步骤
在数据统计领域,如果庞杂的数据组存在较多问题,例如组别重复、存在缺失值、数据异常等复杂情况,推荐使用SPSS清洗数据的功能来剔除异常数据,这样可以避免后续数据分析的测算失误。今天,我们以这SPSS清洗数据是什么意思,SPSS清洗数据步骤两个问题为例,带大家了解一下SPSS清洗数据的相关知识。
2025-05-08
SPSS控制变量如何处理 SPSS控制变量是自变量吗
在数据分析阶段,控制变量是对因变量有影响但非研究关注主题的变量,引入控制变量可以更准确测算自变量的影响,通过解释因变量变异的额外来源而减少实验数据的随机误差。今天,我们以SPSS控制变量如何处理,SPSS控制变量是自变量吗这两个问题为例,带大家了解一下SPSS控制变量的相关知识。
2025-05-08
SPSS编码表是什么 SPSS编码表怎么导出
作为一款经典的数据分析软件,相信很多小伙伴们对SPSS都不陌生。使用SPSS能够处理庞大、复杂的数据集,大大提高我们的工作效率。接下来我来为大家介绍SPSS编码表是什么,SPSS编码表怎么导出的相关内容。
2025-05-08
SPSS协变量是什么 SPSS协变量是控制变量吗
在数据收集阶段,当采集的数据繁杂众多,我们可以使用SPSS协变量分析来测算影响重要结果的潜在因素,减少某些变量对实验数据的干扰,由此准确识别多类变量之间的因果关系。今天,我们以SPSS协变量是什么,SPSS协变量是控制变量吗这两个问题为例,带大家了解一下SPSS协变量的相关知识。
2025-05-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: