SPSS > 使用技巧 > 如何在IBM SPSS Statistics中进行K均值聚类分析

如何在IBM SPSS Statistics中进行K均值聚类分析

发布时间:2021-09-18 14: 08: 29

IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。

接下来,我们通过实例来演示一下K均值聚类分析。

一、数据准备

本例使用的是一组店铺的销售数据,包含客流量、销售额与销售量三个连续型变量。我们会使用到以上三个连续变量对数据个案进行K均值聚类分析。

图1:店铺数据
图1:店铺数据

二、K均值聚类参数设置

K均值聚类分析是SPSS分类分析法中的一种,由于其运算的快速性,也被称为“快速聚类”。

图2:K均值聚类
图2:K均值聚类

如图3所示,K均值聚类分析设置面板包含变量、聚类中心等设置参数。

图3:参数设置面板
图3:参数设置面板

按照数据分析目的,如图4所示,我们需将客流量、销售额、销售量添加为变量,然后再单击右侧的“保存”按钮,保存“聚类成员”与“与聚类中心的距离”两个新变量。

图4:变量与保存设置
图4:变量与保存设置

接着,打开“迭代”设置,设置最大迭代次数,一般按照默认即可,如果默认次数过小,应尽量调大。

图5:迭代次数
图5:迭代次数

最后,设置分析的选项,如图6所示,勾选“初始聚类中心”与“每个个案的聚类信息”,以了解初始聚类与最终聚类的个案数目;勾选“ANOVA表”,检验分析的置信水平。

图6:选项设置
图6:选项设置

三、结果解读

运行分析后,回到数据表,如图7所示,原数据表末端出现了两个新变量,分别是“聚类成员”与“与聚类中心的距离”。我们可以从中观察到每个个案所属的聚类,以及该个案与聚类中心的距离。

图7:生成新变量
图7:生成新变量

而从分析结果看到,SPSS初始设定了两个聚类。

图8:初始聚类中心
图8:初始聚类中心

而经过2次迭代运算后,最终聚类中心仍设定为两个不变。

图9:最终聚类中心
图9:最终聚类中心

而从ANOVA分析表看到,客流量、销售额、销售量的显著性都小于0.001,说明这三个变量都能很好地区分各个分类。

图10:ANOVA检验
图10:ANOVA检验

最后,从“每个聚类中的个案数目”可得到每一类别包含的个案数量。

图11:聚类中的个案数目
图11:聚类中的个案数目

四、小结

综上所述,K均值聚类分析,可利用欧式距离的测量,快速地将距离相似的个案归总为一个类别,但也要注意到的是,K均值聚类分析受异常值影响较大。

除K均值聚类,SPSS还提供了系统聚类、二阶聚类的分类方法,可前往SPSS中文网站获取更加系统的演示分享。

作者:泽洋

展开阅读全文

标签:SPSS聚类分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验不显示组别怎么办 SPSS非参数检验结果怎么解读
在数据分析领域,研究者通常要对非正态分布的数据进行非参数检验,这样不仅可以判断不满足正态分布的变量之间是否存在关系,还能够清楚了解数据的秩次信息。今天,我们以SPSS非参数检验不显示组别怎么办,SPSS非参数检验结果怎么解读这两个问题为例,带大家了解一下SPSS非参数检验的相关知识。
2025-06-12
SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办
在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。
2025-06-12
SPSS标准化残差图怎么做 SPSS标准化残差图解读
在数据分析领域,如果研究者想对线性数据集的正态性进行分析,推荐使用SPSS残差图绘制的方法来高效掌握采集的数据信息,以便了解数据模型的拟合情况和误差分布。今天,我们以SPSS标准化残差图怎么做,SPSS标准化残差图解读这两个问题为例,带大家了解一下SPSS标准化残差的相关知识。
2025-06-11
SPSS中如何将文字表达改为数字 SPSS怎么把字符串改成数字格式
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS中如何将文字表达改为数字,SPSS怎么把字符串改成数字格式这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-10
SPSS数据透视表如何创建 SPSS数据透视表字段调整步骤
在数据分析领域,SPSS的功能设置不仅适用于分析繁杂数据组之间的相关关系,还能够计算各类数值并且制作出清晰明确的图表,例如数据透视表、交互作用图等。今天,我们以SPSS数据透视表如何创建,SPSS数据透视表字段调整步骤这两个问题为例,带大家了解一下SPSS透视表设置的相关知识。
2025-06-10
SPSS均值比较怎么操作 SPSS均值比较参数设置流程
在数据分析领域,如果研究者想要判断两组或多组数据在某一方面是否存在明显差异,可以使用SPSS的t检验、卡方检验等方法进行测量,不仅能得到清晰明确的数据表格查看各类占比情况,还能够据此知晓详细的参数设置情况。今天,我们以SPSS均值比较怎么操作,SPSS均值比较参数设置流程这两个问题为例,带大家了解一下SPSS均值比较的知识。
2025-06-06

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: