IBM SPSS Statistics 中文网站 > 使用技巧 > 如何在IBM SPSS Statistics中进行K均值聚类分析

如何在IBM SPSS Statistics中进行K均值聚类分析

发布时间:2021/09/18 14:08:29

IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。

接下来,我们通过实例来演示一下K均值聚类分析。

一、数据准备

本例使用的是一组店铺的销售数据,包含客流量、销售额与销售量三个连续型变量。我们会使用到以上三个连续变量对数据个案进行K均值聚类分析。

图1:店铺数据
图1:店铺数据

二、K均值聚类参数设置

K均值聚类分析是SPSS分类分析法中的一种,由于其运算的快速性,也被称为“快速聚类”。

图2:K均值聚类
图2:K均值聚类

如图3所示,K均值聚类分析设置面板包含变量、聚类中心等设置参数。

图3:参数设置面板
图3:参数设置面板

按照数据分析目的,如图4所示,我们需将客流量、销售额、销售量添加为变量,然后再单击右侧的“保存”按钮,保存“聚类成员”与“与聚类中心的距离”两个新变量。

图4:变量与保存设置
图4:变量与保存设置

接着,打开“迭代”设置,设置最大迭代次数,一般按照默认即可,如果默认次数过小,应尽量调大。

图5:迭代次数
图5:迭代次数

最后,设置分析的选项,如图6所示,勾选“初始聚类中心”与“每个个案的聚类信息”,以了解初始聚类与最终聚类的个案数目;勾选“ANOVA表”,检验分析的置信水平。

图6:选项设置
图6:选项设置

三、结果解读

运行分析后,回到数据表,如图7所示,原数据表末端出现了两个新变量,分别是“聚类成员”与“与聚类中心的距离”。我们可以从中观察到每个个案所属的聚类,以及该个案与聚类中心的距离。

图7:生成新变量
图7:生成新变量

而从分析结果看到,SPSS初始设定了两个聚类。

图8:初始聚类中心
图8:初始聚类中心

而经过2次迭代运算后,最终聚类中心仍设定为两个不变。

图9:最终聚类中心
图9:最终聚类中心

而从ANOVA分析表看到,客流量、销售额、销售量的显著性都小于0.001,说明这三个变量都能很好地区分各个分类。

图10:ANOVA检验
图10:ANOVA检验

最后,从“每个聚类中的个案数目”可得到每一类别包含的个案数量。

图11:聚类中的个案数目
图11:聚类中的个案数目

四、小结

综上所述,K均值聚类分析,可利用欧式距离的测量,快速地将距离相似的个案归总为一个类别,但也要注意到的是,K均值聚类分析受异常值影响较大。

除K均值聚类,SPSS还提供了系统聚类、二阶聚类的分类方法,可前往SPSS中文网站获取更加系统的演示分享。

作者:泽洋

标签:SPSS聚类分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26