发布时间:2021-09-18 14: 08: 29
IBM SPSS Statistics的K均值聚类分析,是一种采用欧式距离作为分类指标的迭代聚类分析方法。其优点是操作简单,运算速度快,但由于其聚类原理是将欧式距离相似的数据归为一个类别,因此需采用连续型的数据变量。
接下来,我们通过实例来演示一下K均值聚类分析。
一、数据准备
本例使用的是一组店铺的销售数据,包含客流量、销售额与销售量三个连续型变量。我们会使用到以上三个连续变量对数据个案进行K均值聚类分析。
二、K均值聚类参数设置
K均值聚类分析是SPSS分类分析法中的一种,由于其运算的快速性,也被称为“快速聚类”。
如图3所示,K均值聚类分析设置面板包含变量、聚类中心等设置参数。
按照数据分析目的,如图4所示,我们需将客流量、销售额、销售量添加为变量,然后再单击右侧的“保存”按钮,保存“聚类成员”与“与聚类中心的距离”两个新变量。
接着,打开“迭代”设置,设置最大迭代次数,一般按照默认即可,如果默认次数过小,应尽量调大。
最后,设置分析的选项,如图6所示,勾选“初始聚类中心”与“每个个案的聚类信息”,以了解初始聚类与最终聚类的个案数目;勾选“ANOVA表”,检验分析的置信水平。
三、结果解读
运行分析后,回到数据表,如图7所示,原数据表末端出现了两个新变量,分别是“聚类成员”与“与聚类中心的距离”。我们可以从中观察到每个个案所属的聚类,以及该个案与聚类中心的距离。
而从分析结果看到,SPSS初始设定了两个聚类。
而经过2次迭代运算后,最终聚类中心仍设定为两个不变。
而从ANOVA分析表看到,客流量、销售额、销售量的显著性都小于0.001,说明这三个变量都能很好地区分各个分类。
最后,从“每个聚类中的个案数目”可得到每一类别包含的个案数量。
四、小结
综上所述,K均值聚类分析,可利用欧式距离的测量,快速地将距离相似的个案归总为一个类别,但也要注意到的是,K均值聚类分析受异常值影响较大。
除K均值聚类,SPSS还提供了系统聚类、二阶聚类的分类方法,可前往SPSS中文网站获取更加系统的演示分享。
作者:泽洋
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS相关分析多个变量怎么做 SPSS相关分析多个变量怎么分析
对于经常需要进行数据分析的用户来说,一款好用的数据分析类软件是不可缺少的。在众多的数据分析类软件当中,这里给大家介绍一款我自己常用的IBM SPSS软件。它可以帮助应对并解决数据分析中存在的大部分问题,接下来给大家介绍SPSS相关分析多个变量怎么做,SPSS相关分析多个变量怎么分析的具体内容。...
阅读全文 >
SPSS 调查问卷如何录入,SPSS调查问卷数据分析
SPSS是一款功能全面的数据管理软件,借助于内置的丰富算法,可完成数据分析,数据预测,数据可视化等多种功能。除工学,医学等自然科学学科,SPSS在社会学研究领域也有广泛的应用,今天以调查员工工作满意度为例,向大家介绍如何使用SPSS进行调查问卷分析,包括SPSS问卷调查录入和问卷数据分析两部分内容。...
阅读全文 >
SPSS配对样本t检验怎么做 SPSS配对样本t检验p值怎么看
说到SPSS配对样本t检验,很多人可能都有点迷糊。其实,它就是用来对比同一个人或同一件事情在两种不同情况下的表现差异。举个简单的例子,比如一个学生的期中和期末成绩,这两个成绩就是“配对样本”。今天,我们就用简单的方式来说说“SPSS配对样本t检验怎么做 SPSS配对样本t检验p值怎么看”,让大家轻松搞懂。...
阅读全文 >
主成分分析法适用于哪些问题 SPSS主成分分析法详细步骤
主成分分析法适用于哪些问题?主成分分析适用于变量间存在着一定相关关系的多变量问题,以达到使用较少的新变量来代表旧变量的目的。本文会使用具体的例子演示SPSS主成分分析法详细步骤。...
阅读全文 >