SPSS > 使用技巧 > 如何在IBM SPSS Statistics中使用简单对应分析两定性变量间关系

如何在IBM SPSS Statistics中使用简单对应分析两定性变量间关系

发布时间:2021-09-17 13: 15: 44

IBM SPSS Statistics的对应分析与常用的因子分析同属降维分析,但不同于因子分析可应用于定性与定量数据,对应分析只能用于两个定性变量的分析,并且主要是通过分析定性变量的列联表数据来得出变量之间的关系。

接下来,我们通过实例来详细了解下。

一、数据准备

本例使用的是一组品牌的评价数据,运用数字代表对各变量表述的同意程度,1-5的数值分别代表非常不同意、不同意、一般、同意、非常同意,属于定性的有序变量。

图1:评价数据
图1:评价数据

二、对应分析参数设置

如图2所示,依次单击分析-降维-对应分析。

图2:对应分析
图2:对应分析

在对应分析设置面板中,包含了行与列变量的设置选项。

先将需要分析的两个定性变量分别添加到行、列变量中。然后,分别单击变量下方的“定义范围”按钮。

图3:变量设置
图3:变量设置

对选定的行或列变量进行类别范围的指定。以“质量好”行变量为例,如图4所示,分别在最小值与最大值中填入“1”、“5”,设定变量的范围。

然后,单击右侧的“更新”按钮。

图4:定义范围
图4:定义范围

将设定的类别范围添加到类别约束中。

图5:类别约束
图5:类别约束

完成变量的范围定义后,行与列变量的右侧会出现范围说明(即(1 5))。

图6:完成范围定义
图6:完成范围定义

接着,打开模型设置,默认解的维数为2,设定“卡方”的距离测量方法,并使用标准化方法,除去行列平均值。

图7:模型设置
图7:模型设置

在统计设置中,保持默认的选项,以获得更为全面的统计结果。

图8:统计设置
图8:统计设置

最后,在图设置中,勾选“双标图”,即在维坐标中,标注行变量与列变量的数据分布,以了解两者在维坐标上的对应关系。

图9:图设置
图9:图设置

三、结果解读

完成以上设置后,运行对应分析,解读结果。

从对应表(即两个变量对应的频数分布图)得出,“质量好”与“知名品牌”的值4与值5交叉频数大。

图10:对应表
图10:对应表

将维数降至3维后,从惯性比例得出前2维惯性比例大,解释因子的贡献度高,并且前2维的累积惯性比例达94.6%。

图11:累积比例
图11:累积比例

从左侧因子双标图以及右侧的按维1排序的对应表得出,知名品牌的值4与质量好的值4与值5相对应;知名品牌的值5与质量好的值4与值5相对应。

图12:按维1排序的对应表
图12:按维1排序的对应表

四、小结

综上所述,SPSS的对应分析是一种简单的、两定性变量的对应关系分析。如果定性变量中的值类别越多,类别之间的关系就会更明显。但其缺点是只能用于分析两个定性变量间的对应关系。

如需分析多个变量间的对应关系,就要使用到最优标度的降维分析方法。具体可前往SPSS中文网站获取更多资料。

作者:泽洋

展开阅读全文

标签:SPSS两定性变量

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存曲线数据怎么录入 SPSS怎么做生存曲线
在数据分析的领域中,生存分析一直是一个重要的概念,它在生物医学领域有着广泛的应用。而在SPSS中录入生存曲线数据,是我们进行生存分析的第一步,也是关键的一步,生存曲线的数据与后续的数据分析有着重要的关联。SPSS软件在其中可以帮助我们快速进行数据分析和曲线绘制,接下来给大家介绍SPSS生存曲线数据怎么录入,SPSS怎么做生存曲线的具体内容。
2025-11-25
SPSS如何处理缺失值 SPSS数据清理与替换方法
每当我们需要处理一组数据的缺失值时,就需要用到专业的数据分析软件。在数据分析软件的这个领域中,SPSS既能够帮助我们处理数据样本的缺失值,还可以针对数据的缺失值对样本进行整体替换与填补。接下来给大家介绍SPSS如何处理缺失值,SPSS数据清理与替换方法的具体内容。
2025-11-25
SPSS多层线性模型如何构建 SPSS多层线性模型层级变量设置
每当在进行数据分析时,许多小伙伴可能都会遇到构建多层线性模型的情况。构建多层线性模型能扩大已测量的数据样本,使数据涵盖更多内容,进而更加有说服力。而在进行多层线性模型构建时,一款好用的数据分析软件是不可缺少的,这里给大家介绍我自己常用的SPSS数据分析软件,同时以它为例向大家介绍SPSS多层线性模型如何构建,SPSS多层线性模型层级变量设置的具体内容。
2025-11-25
SPSS怎样进行聚类分析 SPSS聚类中心不稳定怎么解决
对于经常需要与数据分析打交道的小伙伴来说,想必对聚类分析这一分析操作肯定是不陌生的。聚类分析指的是收集相似的数据样本,并在相似数据样本的基础之上收集信息来进行分类,下面以SPSS为例,向大家介绍SPSS怎样进行聚类分析,SPSS聚类中心不稳定怎么解决的具体内容。
2025-11-25
SPSS怎么绘制柱状图 SPSS图表编辑器使用技巧
由于数据分析领域经常需要庞大的数据样本,所以将数据图像化便是其中的一项重要任务。因此绘制数据分析图便成为了其中的关键操作。SPSS作为一款专业的数据分析软件,不仅可以用它来处理日常的各种数据分析内容,还能够完成数据图像的绘制和图表的编译。接下来给大家介绍SPSS怎么绘制柱状图,SPSS图表编辑器使用技巧的具体内容。
2025-11-25
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。
2025-11-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: