IBM SPSS Statistics 中文网站 > 使用技巧 > 如何在IBM SPSS Statistics中使用简单对应分析两定性变量间关系

如何在IBM SPSS Statistics中使用简单对应分析两定性变量间关系

发布时间:2021-09-17 13: 15: 44

IBM SPSS Statistics的对应分析与常用的因子分析同属降维分析,但不同于因子分析可应用于定性与定量数据,对应分析只能用于两个定性变量的分析,并且主要是通过分析定性变量的列联表数据来得出变量之间的关系。

接下来,我们通过实例来详细了解下。

一、数据准备

本例使用的是一组品牌的评价数据,运用数字代表对各变量表述的同意程度,1-5的数值分别代表非常不同意、不同意、一般、同意、非常同意,属于定性的有序变量。

图1:评价数据
图1:评价数据

二、对应分析参数设置

如图2所示,依次单击分析-降维-对应分析。

图2:对应分析
图2:对应分析

在对应分析设置面板中,包含了行与列变量的设置选项。

先将需要分析的两个定性变量分别添加到行、列变量中。然后,分别单击变量下方的“定义范围”按钮。

图3:变量设置
图3:变量设置

对选定的行或列变量进行类别范围的指定。以“质量好”行变量为例,如图4所示,分别在最小值与最大值中填入“1”、“5”,设定变量的范围。

然后,单击右侧的“更新”按钮。

图4:定义范围
图4:定义范围

将设定的类别范围添加到类别约束中。

图5:类别约束
图5:类别约束

完成变量的范围定义后,行与列变量的右侧会出现范围说明(即(1 5))。

图6:完成范围定义
图6:完成范围定义

接着,打开模型设置,默认解的维数为2,设定“卡方”的距离测量方法,并使用标准化方法,除去行列平均值。

图7:模型设置
图7:模型设置

在统计设置中,保持默认的选项,以获得更为全面的统计结果。

图8:统计设置
图8:统计设置

最后,在图设置中,勾选“双标图”,即在维坐标中,标注行变量与列变量的数据分布,以了解两者在维坐标上的对应关系。

图9:图设置
图9:图设置

三、结果解读

完成以上设置后,运行对应分析,解读结果。

从对应表(即两个变量对应的频数分布图)得出,“质量好”与“知名品牌”的值4与值5交叉频数大。

图10:对应表
图10:对应表

将维数降至3维后,从惯性比例得出前2维惯性比例大,解释因子的贡献度高,并且前2维的累积惯性比例达94.6%。

图11:累积比例
图11:累积比例

从左侧因子双标图以及右侧的按维1排序的对应表得出,知名品牌的值4与质量好的值4与值5相对应;知名品牌的值5与质量好的值4与值5相对应。

图12:按维1排序的对应表
图12:按维1排序的对应表

四、小结

综上所述,SPSS的对应分析是一种简单的、两定性变量的对应关系分析。如果定性变量中的值类别越多,类别之间的关系就会更明显。但其缺点是只能用于分析两个定性变量间的对应关系。

如需分析多个变量间的对应关系,就要使用到最优标度的降维分析方法。具体可前往SPSS中文网站获取更多资料。

作者:泽洋

展开阅读全文

标签:SPSS两定性变量

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: