IBM SPSS Statistics 中文网站 > 使用技巧 > 如何在IBM SPSS Statistics中进行逐步判别分析

如何在IBM SPSS Statistics中进行逐步判别分析

发布时间:2021-09-16 13: 31: 02

IBM SPSS Statistics的判别分析是分类分析方法中的一种,是在分类已知的前提下,根据一个分组变量以及其他已知的变量数据来统计判定,并确定分组的分析方法。

判别分析包含一般判别与逐步判定。本文重点讲解逐步判定,其特点是,通过步进的方法,判别与分类相关性强的变量来进一步确定分类。另外,逐步判定还能对其中的样本进行预测判别。

接下来,我们通过实例来详细讲解下。

一、数据准备

本文使用的是一组店铺的数据,使用星级变量作为分组变量。其中,账号1对应的样本缺失了星级数据,需进行预测判别。

图1:店铺数据
图1:店铺数据

二、判别分析

如图2所示,依次单击分析-分类-判别式。

图2:判别分析
图2:判别分析


如图3所示,在判别分析的参数列表中,未出现上述的“星级”变量,这是因为,判别分析的变量必须是数值型变量,而上述数据中的“星级”变量属于字符串变量。因此,我们需先进行变量的转换。

图3:设置面板
图3:设置面板


三、转换变量类型

如图4所示,依次单击SPSS的转换-重新编码为不同变量。

图4:密码类型
图4:密码类型

将星级变量添加到右侧变量转换选项,并设置输出变量名称为星级1。

接着,选中已定义的输出变量(即星级—>星级1),单击“旧值和新值”按钮。

图5:重新编码为不同变量
图5:重新编码为不同变量

如图6所示,将星级变量中旧值的“五星”、“四星”、“三星”依次定义为新值“5”、“4”、“3”。

图6:赋新值
图6:赋新值

接着,返回到数据集,如图7所示,在原数据的末端会出现一个新的星级1变量。

图7:屏幕代码
图7:屏幕代码

四、判别分析参数设置

完成变量的转换后,再次启动判别分析,如图8所示,将星级1变量添加为分组变量。然后,再单击下方的“定义范围”按钮,定义分组变量的最小值与最大值。

图8:分组变量与范围
图8:分组变量与范围

接着,如图9所示,将其他用于判别的变量添加为自变量,并在自变量下方勾选“使用步进法”。

图9:自变量
图9:自变量

完成变量的设置后,打开统计设置,勾选“平均值”、“费希尔”、“未标准化”函数系数,用于给出判别函数的系数。

图10:统计量
图10:统计量

在分类设置中,勾选“摘要表”、“合并组”、“领域图”,用于给出分类的结果。

图11:分类设置
图11:分类设置

最后,在保存设置中,勾选“预测组成员资格”,用于预测观察值的分类。

图12:保存设置
图12:保存设置

五、结果解读

完成以上设置后,运行分析。

如图13所示,根据逐步统计的结果,销售额的判定系数显著性小于0.01,说明销售额对判定分类具有显著性意义,而客流量、销售量被剔除,说明以上两个变量对判定无显著意义。

图13:判别变量
图13:判别变量

从分类结果表看到,判定分析已经正确地对95.4%的个案进行分类,并且将未分组的个案预测判定为类4。

图14:分类结果与预测成员
图14:分类结果与预测成员

六、小结

综上所述,SPSS的逐步判别,是在分类已知的前提下,运用分组变量与其他已知变量进行逐步判定、剔除变量,确定分类的分析方法。与一般判定相对比,逐步判定考虑了变量的相关性,有助于提高分析的效率以及剔除无意义变量的影响。

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics判别分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: