SPSS > 使用技巧 > 主成分分析法适用于哪些问题 SPSS主成分分析法详细步骤

主成分分析法适用于哪些问题 SPSS主成分分析法详细步骤

发布时间:2022-05-09 20: 04: 36

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

主成分分析法适用于哪些问题?主成分分析适用于变量间存在着一定相关关系的多变量问题,以达到使用较少的新变量来代表旧变量的目的。本文会使用具体的例子演示SPSS主成分分析法详细步骤。

一、主成分分析法适用于哪些问题

主成分分析法实际上是一种降维分析法,是把原有的多个变量提取为主要的少数几个综合变量的统计分析方法。

因此,主成分分析法更适用于分析变量间存在着一定相关关系的多变量问题,可通过降维的方法,将有相关关系的多个变量降维为少数几个变量,以找出影响研究问题的最主要的几个综合变量,比如在分析影响经济的因素时,可通过主成分分析将影响经济的多个因素归总为最主要的几个综合因素。

二、SPSS主成分分析法详细步骤

那么,主成分分析法具体怎么分析使用?接下来,我们使用SPSS软件具体演示一下步骤。

本文分析的是影响品牌评价的因素,其中包含口味好、有促销等五个变量,需通过主成分分析法归纳主要的影响因素。

图1:分析数据
图1:分析数据

 

首先,依次单击spss的分析-降维-因子分析。

图2:因子分析
图2:因子分析

 

接着,如图3所示,将影响品牌评价的五个变量添加到变量选项框。

图3:变量设置
图3:变量设置

 

接着,进行分析方法的设置。

如图5所示,点击“描述”分析,在弹出的描述分析设置上,勾选相关性矩阵中的“系数”、“KMO和巴特利特球形度检验”,分别检验变量间是否存在高度共线性、偏相关性与独立性。

图4:描述设置
图4:描述设置

 

接着,进行提取因子的设置。

在方法设置中,选择“主成分”法,即本次主要演示的主成分分析法,然后勾选“碎石图”与“未旋转因子解”,以辅助了解哪些是主要的因子。

在提取因子中,可基于特征值设定提取的因子数,也可以自行固定提取的因子数,本例选择固定因子数,并将数目设为4。

图5:提取设置
图5:提取设置

 

在旋转设置中,选择“最大方差法”,并在显示中勾选“旋转后的解”与“载荷图”。旋转分析有助于了解因子分析后,变量的因子归属。

图6:旋转设置
图6:旋转设置

 

最后,再在因子得分中,勾选“保存为变量”,并将方法设置为“回归”,同时“显示因子得分系数矩阵”。

图7:因子得分
图7:因子得分

 

三、SPSS主成分分析法结果解读

完成以上的操作步骤后,即可进行SPSS的运算。在上述的操作中,我们进行了很多的方法设置,该怎么去解读结果呢?

首先,我们需要从相关性矩阵的结果中检查变量间的相关性。

如图8所示,数据中的变量存在着一定的相关关系,但不存在严重的共线性,说明数据可以进行主成分分析,但又不会受严重共线性影响。

图8:相关性矩阵
图8:相关性矩阵

 

在满足无严重共线性假设后,进一步查看数据的偏相关性与独立性。

KMO值为0.527,其取值范围为0-1,越接近与1,越适用于因子分析,本粒子结果仅略微超过0.5的界限,说明各个变量间存在着相关关系,但相关性不够强,后续降维结果可能不明显。

而巴特利特检验的显著性为0.086,大于0.05的置信水平,小于0.1的置信水平,也就是说仅有90%的概览拒绝原假设(各变量间相互独立,无相关关系),即相关性不够强,结果与KMO值一致。

图9:检验结果
图9:检验结果

 

公因子方差,“有促销”提取比例为100%,接着是“摆放显眼”(95%)与“知名品牌”(90%)。

图10:公因子方差
图10:公因子方差

 

总方差解释,前2个维度累积占比为51%,可说明51%的特征;而前4个维度累积占比为86%,可构成86%的特征。

图11:总方差解释
图11:总方差解释

 

碎石图,第一、二个成分的特征值较大。

图12:碎石图
图12:碎石图

 

而从旋转后的成分矩阵看到,成分1,最大值为0.876,即“质量好”;成分2,最大值为0.943与0.373,即“知名品牌”与“口味好”;成分3,最大值为0.976,即“摆放显眼”;成分4,最大值为0.993,即“有促销”。

综上所述,以上五个变量可降维为四个因子,在成分3中,“知名品牌”与“口味好”可归纳为一个共同因子,但相关性不算强。

图13:旋转后的成分矩阵
图13:旋转后的成分矩阵

 

四、小结

以上就是关于主成分分析法适用于哪些问题,SPSS主成分分析法详细步骤的相关内容。SPSS主成分分析法可进行多变量问题的降维分析,将多个变量的影响归纳为少数几个综合变量,来归总不同的影响因素,但需要同时纳入数据的共线性、偏相关性、独立性等指标,以检验主成分分析结果的准确性。

作者:泽洋

展开阅读全文

标签:SPSSIBM SPSS StatisticsSPSS教程主成分分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS酒水行业应用案例
在酒水行业的生产、研发与决策过程中,数据分析是提升效率、优化质量的核心支撑。某知名酒企此前依赖基础工具与外部服务处理数据,面临分析精度低、成本高、流程不规范等问题。通过部署 SPSS 专业数据分析软件,结合控制图、线性回归、主成分分析等多类统计方法,该企业实现了生产过程的精准监控、质量因素的深度挖掘及决策的科学化,显著提升了自主分析能力与业务效益。本文将基于该酒企的实践案例,详细阐述 SPSS 在酒水行业的具体应用。
2025-08-29
SPSS临床应用案例
在医疗科研领域,临床数据的统计分析是验证研究假设、得出科学结论的关键环节。某大型三甲医院作为大学医学院附属医院,其肿瘤科医生兼具临床诊疗与科研教学双重职责,在开展多项临床研究项目时积累了大量数据,亟需高效准确的统计分析工具。SPSS Statistics 凭借操作简便、功能全面的优势,成为该医院处理临床科研数据的首选工具。本文将以该医院肿瘤科的临床研究数据为例,详细阐述 SPSS 在统计描述、统计推断及统计建模中的具体应用,为医疗科研工作者提供参考。
2025-08-29
SPSS逻辑回归是什么 SPSS逻辑回归二分类变量设置方法
当进行SPSS数据分析的时候,如果遇到的是二分类的变量数据,研究者通常会使用逻辑回归的分析方法,这可以适用于分类变量与多个自变量之间的关系分析。本文以SPSS逻辑回归是什么,SPSS逻辑回归二分类变量设置方法这两个问题为例,给大家介绍一下SPSS逻辑回归的相关知识。
2025-08-27
SPSS变量重编码怎么操作 SPSS变量重编码数值范围定义
当在处理多类数据变量的时候,变量的重新编码能够帮助研究者简化数据信息、提升数据分析效率,所以对于SPSS变量编码的方法掌握是较为重要的,例如将字符串表示的年龄阶段转换为多个数值代表的新变量。本文以SPSS变量重编码怎么操作,SPSS变量重编码数值范围定义这两个问题为例,简单介绍一下SPSS变量重编码的知识。
2025-08-27
SPSS Tukey检验是什么 SPSS Tukey检验怎么做
在数据分析领域,Tukey事后检验经常作为SPSS方差分析的重要结果,也就是被用来分析多组变量在某方面的水平均值是否具有显著差异,例如不同类型药物的治疗效果、不同款式产品的销售量、不同年龄段儿童的智力发育水平等等。本文以SPSS Tukey检验是什么,SPSS Tukey检验怎么做这两个问题为例,简单介绍一下Tukey检验的相关知识。
2025-08-27
SPSS如何进行多重共线性检验 SPSS多重共线性检验分析解读
多重共线性检验是一种常见的回归分析模型,用于检验各变量之间是否存在高度关联性,也是在实际的数据分析过程中使用较为频繁的几类分析模型之一。今天我就以SPSS如何进行多重共线性检验,SPSS多重共线性检验分析解读这两个问题为例,来向大家讲解一下多重共线性检验的相关知识。
2025-08-27

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: