发布时间:2024-12-28 09: 30: 00
品牌型号:Dell N5010
系统:Windows 10
软件版本:IBM SPSS Statistics 试用版
主成分分析(Principal Component Analysis,PCA)是一种应用非常广泛的的统计方法。主成分分析通过对原始数据进行数据降维、特征提取,将原始数据转换为一组新的、线性无关的变量(称为主成分),这一组变量反应了数据的主要特征,减少了冗余信息和噪声,为后续分析提高了效率。这里向大家介绍如何使用IBM SPSS Statistics进行主成分分析,SPSS主成分分析法步骤是什么,SPSS主成分分析法的结果怎么解读,本文分两小节向大家作简单介绍。
一、SPSS主成分分析法步骤是什么
主成分分析的核心是通过协方差矩阵对数据的变异性进行建模,然后通过线性变换将数据降维。通过提取主成分,我们能够在保留主要信息的情况下,减少数据的维度,同时也能帮助我们更加深入了解数据的特征。
进行主成分分析的数据一般具备高维的特点,例如图1中数据,使用a到h共8个维度描述某场景,这8个维度中可能存在几个维度,他们组成一个特征矩阵,即可反映这些数据的主要特征,求解特征矩阵的过程就是主成分分析。

依次点击【分析】,【降维】,【因子】,进入主成分分析界面。

将数据加入“变量”列表,点击【描述】,勾选“初始解”,“系数”,“KMO和巴利特球形度检验”三个选项。然后点击【继续】。

点击【提取】,勾选“未旋转因子解”,“碎石图”两个选项,点击【继续】,点击【确定】,完成主成分分析。

以上就是使用SPSS进行主成分分析的过程,如何解读分析结果,我们在第二小节中向大家介绍。
二、SPSS主成分分析法的结果怎么解读
首先查看总方差解释表格,提取的三个主成分累积为83.169,即三个主成分对变化的解释程度为83.169,提示八个维度可以提取三个主成分。

查看碎石图,在第四个组件时曲线陡度发生变化,认为取前三个变量作为主成分即可。

得出的主成分矩阵如图所示,主成分矩阵经计算即可得到特征向量。

本文向大家介绍了SPSS主成分分析法步骤是什么,SPSS主成分分析法的结果怎么解读。主成分分析通过数学方法降低了数据的维度,降低了分析难度。主成分分析对于非线性数据处理效果可能不佳,另外,主成分分析对异常值非常敏感,进行主成分分析时,应注意剔除异常值。
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS如何做因子分析 SPSS因子载荷解释不清晰怎么办
每当我们在进行数据分析的工作时,因子分析是绕不开的一个话题。它在一组数据的分析中占据了重要的位置,主要用来检验不同变量之间是否存在共性的因子,而这些因子会影响数据的变量,例如从学生的考试成绩中判断是否存在共有的数据因子,这部分共有的数据因子对学生的成绩好坏会产生影响。下面我们以一款专业的数据分析软件SPSS为例,向大家介绍SPSS如何做因子分析,SPSS因子载荷解释不清晰怎么办的具体内容。...
阅读全文 >
SPSS显著性小于0.001的意义 SPSS显著性大于0.05怎么办
在使用SPSS软件进行数据分析工作的过程中,得到的显著性水平分析结果具有极为重要的作用。它能够帮助我们衡量变量之间是否存在真实的关联,或者不同组别数据之间是否存在实质性的差异。今天我们就一起来探讨关于SPSS显著性小于0.001的意义,SPSS显著性大于0.05怎么办的问题。...
阅读全文 >
SPSS Tukey检验是什么 SPSS Tukey检验怎么做
在数据分析领域,Tukey事后检验经常作为SPSS方差分析的重要结果,也就是被用来分析多组变量在某方面的水平均值是否具有显著差异,例如不同类型药物的治疗效果、不同款式产品的销售量、不同年龄段儿童的智力发育水平等等。本文以SPSS Tukey检验是什么,SPSS Tukey检验怎么做这两个问题为例,简单介绍一下Tukey检验的相关知识。...
阅读全文 >
SPSS如何进行多重共线性检验 SPSS多重共线性检验分析解读
多重共线性检验是一种常见的回归分析模型,用于检验各变量之间是否存在高度关联性,也是在实际的数据分析过程中使用较为频繁的几类分析模型之一。今天我就以SPSS如何进行多重共线性检验,SPSS多重共线性检验分析解读这两个问题为例,来向大家讲解一下多重共线性检验的相关知识。...
阅读全文 >