SPSS > 使用技巧 > SPSS多元线性回归分析预测怎么做 SPSS多元线性回归分析结果怎么看

SPSS多元线性回归分析预测怎么做 SPSS多元线性回归分析结果怎么看

发布时间:2024-12-28 09: 37: 00

品牌型号:联想ThinkBook

系统:windows10 64位旗舰版

软件版本:IBM SPSS Statistics 29.0.2.0

在数据统计分析中,多元线性回归是经常使用的一种数据分析方法。多元线性回归可以帮助我们预测一种或者多种变量对另外一种变量的影响程度,也可以理解为某种或者多种因素对另外一种的因素的影响作用。为了让大家对此有更深入的了解,接下来给大家介绍,SPSS多元线性回归分析预测怎么做,以及SPSS多元线性回归分析结果怎么看。

一、SPSS多元线性回归分析预测怎么做

多元线性回归是通过分析回归系数的显著性水平以及符号大小,计算自变量对因变量的影响,下面在SPSS中给大家进行实际操作。

1、将准备好的数据集,通过SPSS的【导入数据】功能,加载到SPSS软件中。

导入数据集
图1:导入数据集

2、在SPSS菜单栏中依次点击【分析】-【回归】-【线性】。

分析菜单
图2:分析菜单

3、在【线性回归】窗口,将【VAR1】移动到因变量输入框中,其他自变量移动到块输入框中。

“线性回归”窗口
图3:“线性回归”窗口

4、点击【统计】按钮,在弹出的窗口勾选中【估算值】、【模型拟合】、【共线性诊断】,点击【继续】按钮返回上一级窗口,点击【确定】按钮。

统计设置
图4:统计设置

5、完成上述操作,多元线性回归预测分析就完成了,如下图所示。

分析结果报告
图5:分析结果报告

二、SPSS多元线性回归分析结果怎么看

上文给大家介绍了SPSS多元线性回归的分析步骤,并得到了数据集的多元线性回归分析结果,下面给大家详细解读此结果。

在模型摘要表格中主要关注是的R方值,R方值代表的是自变量对因变量的解释程度百分比,也就是影响程度百分比,从表格中可以看出自变量对因变量的影响百分百达到了6.8%。

模型摘要
图6:模型摘要

在ANOVA表格中主要是看显著性数值,也就是P值,表中的P值明显是大于0.05的,因此可以得出模型的显著性水平不太好。

ANOVA表格
图7:ANOVA表格

在系数表格中,主要观察标准化系数,但前提是显著性数值要小于0.05,否则标准化数据则没有意义,从下表可以看出显著性水平是大于0.05的,因此也不需要在看标准化系数。

系数表格
图8:系数表格

三、SPSS多元线性回归分析注意事项

在使用SPSS进行多元线性回归的时候,数据集中的数据是要满足一些条件的,只有满足这些前提条件,才可以进行多元线性回归,下面给大家详细介绍。

1、数据集中的因变量一定要是定量数据,同时自变量的个数要大于或者等于2,对自变量的数据类型没有太多的要求,一般是定量数据或者定类数据都可以。

2、在对数据集进行线性回归之前,需要先画散点图,确定数据集中的自变量和因变量之间有没有线性关系。

3、要确保自变量与因变量之间不存在多重共线性,可以通过VIF值进行判断。

4、数据集中的数据残差要符合正态分布和方差齐性,可以通过直方图进行判断。

总结:以上就是SPSS多元线性回归分析预测怎么做,以及SPSS多元线性回归分析结果怎么看的全部内容。本文不仅给大家介绍了在SPSS中如何进行多元线性回归预测,还给大家解读了SPSS多元线性回归的分析结果。同时,也给大家讲解了SPSS多元性线性回归的注意事项,希望能帮助到有需要的小伙伴。

 

作者:子楠

展开阅读全文

标签:SPSS多元回归分析SPSS多元线性回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14
SPSS残差正态怎样检验 SPSS残差正态QQ图应如何判读
每当我们在对采集的数据样本进行回归分析或者方差检验的时候,都需要遵守数据检验的一个前提:模型的残差需要服从近似正态分布的规律。所以说残差的正态分布相当于整个数据样本的底座和基石,没有正态分布的规律,就无法进行后续的正态检验和分析。而在使用SPSS进行残差正态分析的时候,同样会面临如何检验以及判读QQ图的情况。下面给大家介绍SPSS残差正态怎样检验,SPSS残差正态QQ图应如何判读的具体内容。
2026-01-14
SPSS曲线回归分析的基本原理 SPSS曲线回归分析结果解读
我们在对一组数据样本进行分析的时候,曲线回归分析是其中不可缺少的一个环节。曲线回归分析作为数据分析中的一项重要操作,主要在评估数据样本之间的关联度以及相互关系时有着广泛应用,这样可以得到数据样本的整体变化趋势以及评估未来的数据发展周期(例如分析销售额和营销成本之间的关系)。而曲线回归的结果对数据样本测算同样有着重要意义,下面以SPSS为例,给大家介绍SPSS曲线回归分析的基本原理,SPSS曲线回归分析结果解读的具体内容。
2026-01-08
SPSS怎么导出结果为Excel SPSS表格导出后乱码怎么办
SPSS既能够帮助我们进行专业的数据分析(包含了回归分析、线性模型分析和缺失值分析等),又可以把数据分析后得到的报告结果进行保存或导出,便于数据分析结果的引用。下面就以SPSS为例,向大家介绍SPSS怎么导出结果为Excel,SPSS表格导出后乱码怎么办的具体内容。
2026-01-08
SPSS怎么进行描述性统计分析 SPSS均值标准差计算步骤
在统计学当中,描述性分析主要用来对调查样本总体的数据进行相关描述性质的研究(比如用图形的方式描述分析)。而在进行描述性分析的时候,我经常会用到SPSS数据分析软件,这款软件给我提供了许多数据分析的帮助。接下来给大家介绍SPSS怎么进行描述性统计分析,SPSS均值标准差计算步骤的具体内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: