SPSS > 使用技巧 > 回归分析SPSS步骤 回归分析SPSS结果解读

回归分析SPSS步骤 回归分析SPSS结果解读

发布时间:2022-05-11 14: 12: 11

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

回归分析SPSS步骤,本文会以研究客流量对销售额影响的问题为例具体演示SPSS操作步骤,同时,也会具体进行回归分析SPSS结果解读,并进一步讲解回归分析的其他类型,以帮助加深对回归分析的认识。

一、回归分析SPSS步骤

本文使用的是一组客流量和销售额的数据,用于构建客流量与销售额的线性回归分析,以研究客流量的变化对销售额的影响。

图1:示例数据
图1:示例数据

 

本例数据仅包含一个自变量与一个因变量,因此可构建简单的一元线性回归方程,依次单击SPSS的分析-回归-线性选项,进行线性回归分析。

图2:线性回归分析
图2:线性回归分析

 

第一步选择变量,分别将销售额、客流量添加到因变量、自变量选项中,以研究自变量客流量对因变量销售额的影响。

图3:选择变量
图3:选择变量

 

 

第二步,指定线性回归进入的方式,包括输入(自变量全部放进回归模型)、步进(按自变量贡献度、剔除与否等决定自变量是否放入回归模型)、除去(建立自变量模型后,根据条件剔除自变量)、后退(与除去相似,但后退采用逐次剔除自变量的方法)与前进(逐次添加自变量)五种方法。

由于本例分析的是简单的一元线性回归方程,可以按照默认选择“输入”。

图4:进入方法
图4:进入方法

 

第三步设置统计量,分别指定以下统计量:

1.回归系数,进行线性回归方程系数的计算,勾选“估算值”,可获得参数估计量。

2.模型拟合,了解模型的拟合度以及预测的准确度,可同时勾选“描述”统计数值,查看平均值、方差等。

3.残差,勾选“德宾-沃森(D-W)”检验,以了解残差是否存在自相关,检验模型是否具有统计学意义。

图5:统计方法
图5:统计方法

 

第四步,设置参考图表,比如标准化残差图中的“直方图”、“正态概览图”,用于辅助分析残差的自相关性、正态性,检验模型是否具有统计学意义。

图6:标准化残差图
图6:标准化残差图

 

第五步,如果在回归方程中需要设置常数项,需在“选项”设置中勾选“在方程中包括常量”。

图7:选项设置
图7:选项设置

 

二、回归分析SPSS结果解读

完成以上SPSS的设置后,即可进行运算获取结果,我们需要从模型拟合度、残差是否具有自相关来检验回归方程是否具有统计学意义,以及判断其预测的准确度。

a.模型拟合效果

模型摘要,求得的回归方程R方为0.839,R方数值越接近于1,说明方程的拟合优度越好,一般需要大于0.6。本例回归方程R方为0.839,说明本例分析所得的回归方程拟合效果良好。

图8:模型摘要
图8:模型摘要

 

ANOVA分析,回归模型的显著性值为0.00,小于0.05的置信空间,即说明有95%的概率拒绝原假设(原假设为客流量与销售额之间无回归关系),也就是说,客流量与销售额之间存在着显著的回归关系。

图9:ANOVA检验
图9:ANOVA检验

 

b.残差相关性分析

通过回归方程R方、ANOVA分析,可得知回归方程具有统计学意义,但模型是否具有准确的预测性,还需要通过残差相关性分析进一步确认。如果残差存在自相关的话,模型的预测准确度就不高。

查看模型摘要中的德宾-沃森值为2.060,查阅德宾-沃森表得到,样本量n=198(采用200样本量D-W值),控制变量数量k=1,其下临界值LD=1.664、上临界值UD=1.684。

而本例的德宾-沃森值为2.060,根据判定规则,本例回归方程符合“如果UD

图10:D-W检验
图10:D-W检验

 

残差直方图,可查看到残差的分布趋近于正态曲线的分布。

图11:残差直方图
图11:残差直方图

 

再结合正态P-P图分析,数值的分布近似与直线,说明残差的正态性良好。

在满足残差无自相关性、服从正态分布的前提下,说明该回归方程具有良好的预测性。

 

图12:残差P-P图
图12:残差P-P图

 

c.构建模型表达式

在判定回归模型统计学意义、残差无自相关性、残差满足正态分布的前提下,可求得回归方程的回归系数,从而构建回归方程。

系数分析表,客流量回归系数的显著性数值为0.00<0.05,有95%概率拒绝原假设;而常量系数的显著性为0.4,无法拒绝原假设。说明自变量回归系数具有统计学意义,而常量系数不具有统计学意义,可构建y=12.821x的一元线性回归方程。

图13:选择变量
图13:选择变量

 

三、回归分析有哪些类型

在上文的示例中,我们演示了简单的一元线性回归分析,那么,除此以外,回归分析还包含哪些类型呢?

回归分析包含了线性回归与非线性回归分析,其中:

1.线性回归分析,可分为一元线性回归分析(一个自变量X与因变量Y的关系)与多元线性回归分析(多个自变量与因变量Y的关系)

2.非线性回归分析,也称为曲线回归,根据因变量是定量变量或定性变量可分为Logistic回归、有序回归、Probit回归等。非线性回归分析由于模型未知,其分析情况会更为复杂,常需要借助图表归纳,或简化为多元线性回归来分析。

四、小结

以上就是回归分析SPSS步骤,回归分析SPSS结果解读的相关内容。本文重点演示了SPSS中的一元线性回归分析的步骤,其中会涉及到回归方程的共线性、残差相关性、残差正态性、方程拟合优度等指标的使用。

 

 作者:泽洋

展开阅读全文

标签:一元线性回归分析回归分析二元回归分析有序回归分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS怎么求置信区间 SPSS怎么求置信区间上下限
在进行数据统计分析的过程中,很多时候需要一些数据辅助确定变量之间影响程度的可信度。例如使用SPSS对数据集进行变量影响程度分析,就可以通过置信区间确定变量影响程度的可信度,以此估算整体数据的准确度。接下来给大家详细讲解,SPSS怎么求置信区间,以及SPSS怎么求置信区间上下限。
2025-01-17
SPSS交叉表分析的目的 SPSS交叉表分析结果怎么看
在数据统计分析工作中,运用恰当的分析方法可以帮助统计分析人员更为的准确对数据集进行分析,以便更顺利的开展接下来的研究工作。SPSS作为一款功能比较齐全的数据统计分析软件,就可以帮助统计分析人员实现数据集的各种分析工作。为了让大家对SPSS有更进一步的了解,下面给大家详细讲解,SPSS交叉表分析的目的,以及SPSS交叉表分析结果怎么看。
2025-01-17
SPSS中协方差分析怎么做 SPSS协方差怎么计算
作为一种常用的统计方法,协方差分析被用以自然科学、社会科学等诸多领域,用于削弱混杂因素的影响,从而提高实验的精确程度。借助SPSS这款专业的统计分析软件,我们只需要动动鼠标就可以轻松完成数据的计算。接下来我将为大家介绍:SPSS中协方差分析怎么做,SPSS协方差怎么计算。
2025-01-17
SPSS中主成分的系数是什么 SPSS中主成分的系数怎么算
主成分分析是SPSS中一种常用的统计分析方法,今天我们就来说一下关于主成分分析的相关内容,一起来了解下SPSS中主成分分析的系数是什么,SPSS中主成分的系数怎么算的方法,希望可以帮助大家更好的了解运用SPSS数据分析软件。
2025-01-17
SPSS成分矩阵有空白数据怎么做 SPSS成分矩阵结果解读
我们在SPSS中对数据进行分析后,由于原始数据中存在一些异常值或缺失值,导致有时候得到的成分矩阵有空白数据,这种情况是怎么回事?下面就为大家讲解SPSS成分矩阵有空白数据怎么做,SPSS成分矩阵结果解读的相关内容,以方便大家对成分矩阵有更深入的了解。
2025-01-17
SPSS赋值反了对结果有影响吗 SPSS赋值后数据变成点
我们在使用SPSS进行数据分析时,通常会进行一个赋值的操作,它可以帮助我们对数据进行处理和统计。接下来,我给大家介绍SPSS赋值反了对结果有影响吗,SPSS赋值后数据变成点的内容。
2025-01-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: