IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 详解IBM SPSS Statistics两步聚类之结果解读

详解IBM SPSS Statistics两步聚类之结果解读

发布时间:2021/09/15

《详解SPSS两步聚类之参数设置》一文中,我们已经了解了两步聚类的优点、分析原理,以及参数设置的技巧。

在本节中,会对IBM SPSS Statistics聚类后的结果进行解读,其中会涉及到最终聚类的结果、聚类的质量、变量重要性、聚类特征的解读。

如图1所示,我们先来回顾下本例数据在参数设置面板中的详细设置。

图1:二阶聚类设置
图1:二阶聚类设置

一、数值结果

根据上述参数设置,得到如下的数值分析结果。

首先看到自动聚类结果,如图2所示为聚类的透视表结果,展示了不同聚类数目下的BIC、BIC变化量、BIC变化比例与距离测量比率。SPSS会自动综合以上指标的数值,得出最佳的聚类数目。

图2:自动聚类
图2:自动聚类

根据图2的自动聚类透视表结果,SPSS得出了如图3所示的一个3聚类的结果。其中聚类1包含69个个案,占总计34.8%;聚类2包含62个个案,占总计31.3%;聚类3包含67个个案,占总计33.3%。

图3:聚类分布
图3:聚类分布

二、图表结果

接下来,我们再来看看二阶聚类的图表结果。

如图4所示,在模型概要中,显示该模型执行了两步聚类,输入了6个变量,得到3个聚类。另外,其聚类质量为良好。

图4:模型概要
图4:模型概要

如图5所示,右击模型概要,选择“编辑”选项,打开模型查看器,可进一步查看其它的辅助视图。

图5:编辑图表
图5:编辑图表

如图6所示,在模型查看器的左侧包含了模型概要视图,右侧包含了预测变量重要性视图。而通过单击右侧视图下方的查看选项,可切换聚类大小、聚类特征等视图。

首先看到的是预测变量重要性视图,可以看到,星级是最为重要的变量、其次是销售额与销售量。

图6:预测变量重要性
图6:预测变量重要性

而从聚类大小看到,3个聚类的占比相似,最大聚类与最小聚类的比值为1.11。

图7:聚类大小
图7:聚类大小

如果想了解不同聚类的特征,可从如图8所示的聚类特征表中得到相关的信息。聚类特征表展示的是聚类与变量的交叉分析,其数值展示的是分类变量的分布或连续变量的中心点,由此可得出不同聚类的显著特征。

比如,聚类2是五星级占比100%,销售额、销售量、客流量中心点最大、所处区域为3(占比38.7%)的店铺类型。

图8:聚类特征表
图8:聚类特征表

三、小结

综上所述,SPSS的两步聚类分析解读,可先从BIC准则判断最佳的聚类数目,然后,再从模型概要得到聚类质量。

在确认聚类质量可接受的前提下,可通过模型查看器进一步解读聚类变量的重要性、聚类特征等。

作者:泽洋

标签:SPSS两步聚类

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07