SPSS > 使用技巧 > 详解IBM SPSS Statistics两步聚类之结果解读

详解IBM SPSS Statistics两步聚类之结果解读

发布时间:2021-09-15 14: 18: 49

《详解SPSS两步聚类之参数设置》一文中,我们已经了解了两步聚类的优点、分析原理,以及参数设置的技巧。

在本节中,会对IBM SPSS Statistics聚类后的结果进行解读,其中会涉及到最终聚类的结果、聚类的质量、变量重要性、聚类特征的解读。

如图1所示,我们先来回顾下本例数据在参数设置面板中的详细设置。

图1:二阶聚类设置
图1:二阶聚类设置

一、数值结果

根据上述参数设置,得到如下的数值分析结果。

首先看到自动聚类结果,如图2所示为聚类的透视表结果,展示了不同聚类数目下的BIC、BIC变化量、BIC变化比例与距离测量比率。SPSS会自动综合以上指标的数值,得出最佳的聚类数目。

图2:自动聚类
图2:自动聚类

根据图2的自动聚类透视表结果,SPSS得出了如图3所示的一个3聚类的结果。其中聚类1包含69个个案,占总计34.8%;聚类2包含62个个案,占总计31.3%;聚类3包含67个个案,占总计33.3%。

图3:聚类分布
图3:聚类分布

二、图表结果

接下来,我们再来看看二阶聚类的图表结果。

如图4所示,在模型概要中,显示该模型执行了两步聚类,输入了6个变量,得到3个聚类。另外,其聚类质量为良好。

图4:模型概要
图4:模型概要

如图5所示,右击模型概要,选择“编辑”选项,打开模型查看器,可进一步查看其它的辅助视图。

图5:编辑图表
图5:编辑图表

如图6所示,在模型查看器的左侧包含了模型概要视图,右侧包含了预测变量重要性视图。而通过单击右侧视图下方的查看选项,可切换聚类大小、聚类特征等视图。

首先看到的是预测变量重要性视图,可以看到,星级是最为重要的变量、其次是销售额与销售量。

图6:预测变量重要性
图6:预测变量重要性

而从聚类大小看到,3个聚类的占比相似,最大聚类与最小聚类的比值为1.11。

图7:聚类大小
图7:聚类大小

如果想了解不同聚类的特征,可从如图8所示的聚类特征表中得到相关的信息。聚类特征表展示的是聚类与变量的交叉分析,其数值展示的是分类变量的分布或连续变量的中心点,由此可得出不同聚类的显著特征。

比如,聚类2是五星级占比100%,销售额、销售量、客流量中心点最大、所处区域为3(占比38.7%)的店铺类型。

图8:聚类特征表
图8:聚类特征表

三、小结

综上所述,SPSS的两步聚类分析解读,可先从BIC准则判断最佳的聚类数目,然后,再从模型概要得到聚类质量。

在确认聚类质量可接受的前提下,可通过模型查看器进一步解读聚类变量的重要性、聚类特征等。

作者:泽洋

展开阅读全文

标签:SPSS两步聚类

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: