SPSS > 使用技巧 > 详解IBM SPSS Statistics两步聚类之参数设置

详解IBM SPSS Statistics两步聚类之参数设置

发布时间:2021-09-14 14: 55: 49

SPSS的快速聚类(K均值聚类)仅可进行连续型变量的聚类;而系统聚类,虽然可进行连续型与分类型变量的聚类,但同一时间只能进行同一种变量类型的聚类分析。那么,有没有一种聚类方法可同时分析以上两种变量?

答案是肯定的,IBM SPSS Statistics的两步聚类,也称为二阶聚类,就可以同时进行以上两种变量的聚类分析。不仅如此,两步聚类还能分析各种变量的聚类重要性。接下来,我们通过实例来详细了解下吧。

一、数据准备

本例使用的是一组包含客流量、销售额、销售量三个连续型变量,以及店铺类型、星级、所处区域三个分类变量的数据。

图1:店铺数据
图1:店铺数据

二、二阶聚类参数设置

如图1所示,依次单击分析-分类-二阶聚类选项。

图2:二阶聚类
图2:二阶聚类

两步聚类,在SPSS也称为二阶聚类,是通过两个步骤来完成聚类分析。

第一步,通过指定的距离测量(如对数似然或欧式距离)构建分类树,将距离相近的记录为一个树节点;第二步,在分类树基础上,确定聚类分类,并通过BIC或AIC准则判断,以确定聚类结果。

根据以上原理,我们需要进行变量、距离测量、聚类准则等参数设置。

图3:参数设置面板
图3:参数设置面板

首先,将店铺类型、星级、所处区域设置为分类变量;将客流量、销售额、销售量设置为连续变量。

图4:变量设置
图4:变量设置

接着,在距离测量中,设置对数似然法,因欧式距离测量只能用于分析的所有变量都是连续变量的情况。

在聚类数目中,设置自动确定,并保持默认的最大值为15。

在聚类准则中,以BIC作为聚类的判断准则。

图5:计算方法
图5:计算方法

在选项设置中,保持默认的最大内存分配64MB,以及默认的待标准化计数变量,以统一变量的测量尺度。

图6:选项设置
图6:选项设置

最后,在输出设置中,勾选“透视表”,即得到聚类的结果输出;勾选“图表和表(在模型查看器中)”,可进一步查看变量贡献的重要性,以及可视化数据;勾选“创建聚类成员变量”,以了解个案对应的类。

图7:输出设置
图7:输出设置

三、小结

综上所述,相比于K均值聚类、系统聚类,两步聚类可用于分析的变量类型更广,并且可将所有变量类型放在一起进行大样本的数据运算。

关于两步聚类的结果解读,可在IBM SPSS Statistics中文网站查阅《详解SPSS两步聚类之结果解读》一文。

作者:泽洋

展开阅读全文

标签:SPSS两步聚类

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: