IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS应用多元逻辑回归解决无序多分类问题

SPSS应用多元逻辑回归解决无序多分类问题

发布时间:2021-06-08 11: 38: 02

什么是无序多分类?举一个例子,当我们要研究基因突变与疾病之间的关系时,因变量就是疾病的各种分类,如乳癌、胃癌、鳞癌等多种,此时因变量不是简单的患病和不患病,且他们之间是无序的,这就是无序多分类。

当我们要研究自变量与无序多分类因变量之间的关系时,就需要使用到SPSS软件带有的多元逻辑回归模型,下面我来讲解下如何使用。

一、操作演示

如图1所示,我们在IBM SPSS Statistics中建立一组数据,其中有三个变量:ID代表患者编号,第二栏的疾病类型代表因变量,第三栏的是否基因突变代表自变量。

图1:演示数据

点击【分析】--【回归】--【多元Logistic】,如图2,打开多元逻辑回归界面。

图2:多元逻辑回归

首先我们将疾病类型选入因变量的位置,是否基因突变选入因子的位置,如果自变量中还有其他的连续型变量,则需要放入协变量位置,具体见图3。

图3:放入因变量和因子

由于我们的因变量疾病类型是多分类变量,而多元逻辑回归的原理是先指定一个类别为参考类别,然后将其他类别分别与参考类别对比。

因此我们需要点击“参考类别”按钮,然后决定我们要作为参考类别的值,比如我们将0作为参考类别,则选择“第一个类别”或者选择“定制”类别,然后输入值为0。

图4:设定参考类别

二、结果分析

设定后,我们点击“继续”和“确定”保存设置,等待SPSS生成多元逻辑回归的计算结果。

其中,模型拟合信息表格给出了模型拟合好坏的信息。当中-2对数似然的值越小越好,从结果中可以看出,加入自变量后的模型比只有常数项的模型拟合要好(27.311<80.234),显著性结果小于0.001,说明自变量是否基因突变的加入是有统计学意义的。

图5:模型拟合信息

另外,参数估计值表格,以腺癌组为例,X=0相比于X=1,系数值Exp(B)为0.068,说明基因X未突变者患腺癌的风险是突变者患腺癌风险的1/0.068即14.71倍。另外,显著性<0.001,说明腺癌这个系统是具有统计学意义的。

图6:参数估算值表格

最后通过上述的分析,我们可以得出结论:基因X突变患者相比于未突变患者,其发生某恶性肿瘤类型为腺癌、鳞癌和大细胞癌的风险分别为14.71、3.66和8.93倍,这说明基因突变与各类型都具有一定的关系。这就是本节关于IBM SPSS Statistic进行多分类逻辑回归的相关教程了,更多教程尽在IBM SPSS Static中文网站上。

作者署名:包纸

展开阅读全文

标签:spss多元逻辑回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: