发布时间:2021-06-08 11: 38: 02
什么是无序多分类?举一个例子,当我们要研究基因突变与疾病之间的关系时,因变量就是疾病的各种分类,如乳癌、胃癌、鳞癌等多种,此时因变量不是简单的患病和不患病,且他们之间是无序的,这就是无序多分类。
当我们要研究自变量与无序多分类因变量之间的关系时,就需要使用到SPSS软件带有的多元逻辑回归模型,下面我来讲解下如何使用。
一、操作演示
如图1所示,我们在IBM SPSS Statistics中建立一组数据,其中有三个变量:ID代表患者编号,第二栏的疾病类型代表因变量,第三栏的是否基因突变代表自变量。
图1:演示数据
点击【分析】--【回归】--【多元Logistic】,如图2,打开多元逻辑回归界面。
图2:多元逻辑回归
首先我们将疾病类型选入因变量的位置,是否基因突变选入因子的位置,如果自变量中还有其他的连续型变量,则需要放入协变量位置,具体见图3。
图3:放入因变量和因子
由于我们的因变量疾病类型是多分类变量,而多元逻辑回归的原理是先指定一个类别为参考类别,然后将其他类别分别与参考类别对比。
因此我们需要点击“参考类别”按钮,然后决定我们要作为参考类别的值,比如我们将0作为参考类别,则选择“第一个类别”或者选择“定制”类别,然后输入值为0。
图4:设定参考类别
二、结果分析
设定后,我们点击“继续”和“确定”保存设置,等待SPSS生成多元逻辑回归的计算结果。
其中,模型拟合信息表格给出了模型拟合好坏的信息。当中-2对数似然的值越小越好,从结果中可以看出,加入自变量后的模型比只有常数项的模型拟合要好(27.311<80.234),显著性结果小于0.001,说明自变量是否基因突变的加入是有统计学意义的。
图5:模型拟合信息
另外,参数估计值表格,以腺癌组为例,X=0相比于X=1,系数值Exp(B)为0.068,说明基因X未突变者患腺癌的风险是突变者患腺癌风险的1/0.068即14.71倍。另外,显著性<0.001,说明腺癌这个系统是具有统计学意义的。
图6:参数估算值表格
最后通过上述的分析,我们可以得出结论:基因X突变患者相比于未突变患者,其发生某恶性肿瘤类型为腺癌、鳞癌和大细胞癌的风险分别为14.71、3.66和8.93倍,这说明基因突变与各类型都具有一定的关系。这就是本节关于IBM SPSS Statistic进行多分类逻辑回归的相关教程了,更多教程尽在IBM SPSS Static中文网站上。
作者署名:包纸
展开阅读全文
︾
读者也喜欢这些内容:
spss多元回归分析怎么操作 spss多元回归分析数据解读
多元线性回归用来分析多个变量间是否存在相关关系。多元线性回归分析应用领域较广,如医学,体育学,社会学等。借助SPSS统计软件,我们可以非常简便的完成多元回归分析。关于SPSS多元回归分析怎么操作,SPSS多元回归分析数据如何解读,结合实例,本文向大家作简单介绍。...
阅读全文 >
逐步回归分析和多元线性回归的区别 SPSS逐步回归分析实例
将获取的全部样本点用一条光滑曲线连接起来,拟合这条曲线的方法有无数种,按照自变量的个数的多少,可分为一元回归分析和多元回归分析。按照变量之间的关系,可分为线性和非线性。逐步回归分析是多元线性回归分析的一种,本文就来谈谈逐步回归分析和多元线性回归的区别,SPSS逐步回归分析实例。...
阅读全文 >
如何在SPSS中设置逻辑回归的哑变量
哑变量,是一个人为设定的变量,通常取值为0到N,以职业分类来说,0代表学生,1代表工人,2代表老师等等,哑变量就是通过这种取值方式,以此来反映某个变量的不同属性。...
阅读全文 >
spss线性回归图怎么做 spss线性回归图怎么看结果
借助回归分析,我们可以了解到两组变量是否存在具有统计学意义的依赖关系,描述这种依赖关系的方程是什么,方程可以在多大程度上解释因变量的变化。使用SPSS,不仅可以简便的完成回归分析,还可以为变量绘制散点图,便于大家直观的了解变量间关系。关于SPSS线性回归图怎么做,SPSS线性回归图怎么看结果,本文借助实例,向大家做简单的介绍。...
阅读全文 >