IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS应用多元逻辑回归解决无序多分类问题

SPSS应用多元逻辑回归解决无序多分类问题

发布时间:2021/06/08 11:38:02

什么是无序多分类?举一个例子,当我们要研究基因突变与疾病之间的关系时,因变量就是疾病的各种分类,如乳癌、胃癌、鳞癌等多种,此时因变量不是简单的患病和不患病,且他们之间是无序的,这就是无序多分类。

当我们要研究自变量与无序多分类因变量之间的关系时,就需要使用到SPSS软件带有的多元逻辑回归模型,下面我来讲解下如何使用。

一、操作演示

如图1所示,我们在IBM SPSS Statistics中建立一组数据,其中有三个变量:ID代表患者编号,第二栏的疾病类型代表因变量,第三栏的是否基因突变代表自变量。

图1:演示数据

点击【分析】--【回归】--【多元Logistic】,如图2,打开多元逻辑回归界面。

图2:多元逻辑回归

首先我们将疾病类型选入因变量的位置,是否基因突变选入因子的位置,如果自变量中还有其他的连续型变量,则需要放入协变量位置,具体见图3。

图3:放入因变量和因子

由于我们的因变量疾病类型是多分类变量,而多元逻辑回归的原理是先指定一个类别为参考类别,然后将其他类别分别与参考类别对比。

因此我们需要点击“参考类别”按钮,然后决定我们要作为参考类别的值,比如我们将0作为参考类别,则选择“第一个类别”或者选择“定制”类别,然后输入值为0。

图4:设定参考类别

二、结果分析

设定后,我们点击“继续”和“确定”保存设置,等待SPSS生成多元逻辑回归的计算结果。

其中,模型拟合信息表格给出了模型拟合好坏的信息。当中-2对数似然的值越小越好,从结果中可以看出,加入自变量后的模型比只有常数项的模型拟合要好(27.311<80.234),显著性结果小于0.001,说明自变量是否基因突变的加入是有统计学意义的。

图5:模型拟合信息

另外,参数估计值表格,以腺癌组为例,X=0相比于X=1,系数值Exp(B)为0.068,说明基因X未突变者患腺癌的风险是突变者患腺癌风险的1/0.068即14.71倍。另外,显著性<0.001,说明腺癌这个系统是具有统计学意义的。

图6:参数估算值表格

最后通过上述的分析,我们可以得出结论:基因X突变患者相比于未突变患者,其发生某恶性肿瘤类型为腺癌、鳞癌和大细胞癌的风险分别为14.71、3.66和8.93倍,这说明基因突变与各类型都具有一定的关系。这就是本节关于IBM SPSS Statistic进行多分类逻辑回归的相关教程了,更多教程尽在IBM SPSS Static中文网站上。

作者署名:包纸

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
SPSS数据分析难学吗 SPSS数据分析怎么进行筛选
SPSS是一款非常专业的数据统计软件,具备数据管理、统计分析、图形报表统计、数据挖掘以及预测分析等功能,同时SPSS具有功能强大、界面简洁友好、交互性好等特点,被广泛应用于教育学、心理学、问卷调查、医疗卫生等领域的数据研究。为了让大家更好的了解SPSS,下面给大家详细介绍一下,SPSS数据分析难学吗,以及SPSS数据分析怎么进行筛选相关内容。
2023-01-04
SPSS多因素相关性分析结果解读
多因素相关性分析可以帮助用户了解多因素以及因素协同对最终结果的影响程度,从而优化条件,达到更高的经济效益。利用专业的统计学软件SPSS,用户可以方便,快速的完成多因素相关性分析,下面以分析某化学反应中3个温度水平,5个压力水平反应的进行程度为例,向大家介绍SPSS多因素相关性分析的步骤以及结果解读。
2023-01-04
使用IBM SPSS Statistics进行数据验证!
随机计算能力的提高,对数据信息的需求也不断增长,同时收集数据越来越多,这就导致出现更多的数据输入错误。如果使用这些错误数据用于SPSS软件的预测模型来获取预测结果,会导致预测结果出现较大偏差,因此用于预测的数据需要保持干净。如果使用传统方法手动对预测数据进行验证,庞大的数据已经超人力所能处理的能力,SPSS软件就能实现自动化的数据验证,极大节省了人力物力。
2023-01-04
如何使用SPSS检测问卷效度和信度?
检验问卷的效度和信度是明确分析数据有效性的必要保障。在SPSS中,效度分析采用降维因子分析,信度检验通常采用“可靠性检验”。今天,我就向大家演示一下,使用SPSS检测问卷效度和信度的具体操作步骤。
2023-01-04
spss标签怎么输入范围 spss标签和值的区别
SPSS是一款专业的数据资料统计软件。很多刚开始接触SPSS数据统计软件的小伙伴很容易混淆标签和值标签,区分不了标签和值标签都有哪些不同,接下来本文将给大家详细讲解一下,SPSS标签怎么输入范围,以及SPSS标签和值的区别相关内容。
2022-12-26
SPSS标签值不正确 SPSS标签值怎么去除
在使用SPSS进行数据统计分析时,首先需要将分析数据导入到SPSS中,而导入进去的数据资料是需要对数据变量进行定义的,为了方便数据统计分析工作,在变量定义时会对标签值进行设置,而在此设置过程不可避免会遇到一些问题,接下来本文就和大家详细讲解一下,SPSS标签值不正确,以及SPSS标签值怎么去除的操作方法。
2022-12-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣