发布时间:2021-04-21 10: 36: 11
作为广受数据分析师青睐的一款数据统计和分析软件,IBM SPSS Statistics中有全面的数据分析方法,今天我们要介绍的是它的聚类分析中的快速聚类分析。
一、方法概述
聚类分析是将研究对象按照一定的标准进行分类的方法,分类结果是每一组的对象都具有较高的相似度,组间的对象具有较大的差异。
这类分析方法多用于对于数据样本没有特定的分类依据的情况,IBM SPSS Statistics会通过对数据的观察为用户做出较为完善的分类。
快速聚类是聚类分析的一种,使用到的功能在“分析”——“分类”中的“K-均值聚类”。
二、案例分享
1.样本数据
我们这里选择的数据样本是一部分学生的各科期末成绩,使用快速聚类方法可以分析各个学生成绩分布的差异和共性。
2.变量设置
我们将学生的所有单科成绩作为分析变量,移入到“变量”窗口中,将学生的编号变量移入到下侧的“个案标记依据”窗口。
聚类数设置的是分类的数目,这个需要根据数据样本的特点来设置,我们这里设置为4类。
聚类方法有两类,即迭代和分类,前者较为复杂,会在分析过程中不断移动凝聚点,后者则始终使用初始凝聚点,我们选择两类都有的第一种分析方法。
3.聚类中心
用户可以选择从外部文件或数据文件中写入或读取聚类中心,本案例中我们不使用这个功能。
4.迭代设置
我们可以设置迭代的终止条件,即到达设定的最大值后将停止迭代分析,输出聚类分析结果。
收敛性标准设置的是凝聚点改变的最大距离小于初始凝聚点的比例,小于设定值时,也会停止迭代,输出结果。
使用运行均值表示每次观测后都重新计算凝聚点,这些设置保持默认即可。
5.保存
这是用来设置保存形式的,勾选“聚类成员”将保存SPSS的分类结果,勾选“与聚类中心的距离”将保存观测值和所属类别的欧氏距离,我们不做设置。
6.选项
这个对话框设置的是输出的统计量和个案缺失处理方法,勾选“初始聚类中心”和“每个个案的聚类信息”。
7.结果输出
在输出日志中可以看到,这些学生根据他们的单科成绩被分成了四类,SPSS输出了多个表格,包括初始聚类中心、迭代历史记录、聚类成员、最终聚类中心、最终聚类中心之间的距离和每个聚类中的个案数目,完整详细,可信度较高。
三、小结
使用IBM SPSS Statistics进行快速聚类的方法和案例分享就是这么多啦,这是一个较为常用的分类分析法,适用程度很高,希望可以对大家有所帮助!
如果您对SPSS也有兴趣,欢迎进入IBM SPSS Statistics中文网站下载试用!
作者:参商
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
回归分析SPSS步骤 回归分析SPSS结果解读
回归分析SPSS步骤,本文会以研究客流量对销售额影响的问题为例具体演示SPSS操作步骤,同时,也会具体进行回归分析SPSS结果解读,并进一步讲解回归分析的其他类型,以帮助加深对回归分析的认识。...
阅读全文 >
线性回归分析的基本步骤 SPSS线性回归分析方程怎么写
线性回归分析的基本步骤,包括设定回归方程的变量,检验方程是否满足线性回归假设,检验方程的拟合优度,显著性,创建方程等步骤。SPSS线性回归分析方程怎么写?本文会通过实例讲解SPSS线性回归分析方程的撰写方法。...
阅读全文 >
SPSS编码表是什么 SPSS编码表包含几部分
相信很多熟悉数据统计分析的小伙伴,对SPSS并不陌生,甚至有的小伙伴正在使用此款软件。SPSS是一款专业的数据统计分析软件,可以对庞大的数据集进行准确的数据分析,帮助更好的了解数据集特性,得出分析结果,辅助数据研究。接下来要给大家讲解的是有关SPSS编码表是什么,以及SPSS编码表包含几部分的相关内容。...
阅读全文 >
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。...
阅读全文 >