IBM SPSS Statistics 中文网站 > 使用技巧 > 线性回归分析的基本步骤 spss线性回归分析方程怎么写

线性回归分析的基本步骤 spss线性回归分析方程怎么写

发布时间:2022-05-18 15: 16: 42

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

线性回归分析的基本步骤,包括设定回归方程的变量,检验方程是否满足线性回归假设,检验方程的拟合优度,显著性,创建方程等步骤。spss线性回归分析方程怎么写?本文会通过实例讲解spss线性回归分析方程的撰写方法。

一、线性回归分析的基本步骤

线性回归分析,一般需要先通过spss散点图等辅助图表判断数据是否为线性分布后,才能进一步使用线性回归分析。

在判断数据满足线性分布后,还需通过残差服从正态分布、残差无自相关等假设后,才能进一步构建线性回归方程。接下来,我们使用spss详细演示一下步骤。

如图1所示,本例使用的是一组身高与体重的数据,研究身高与体重的线性回归关系。

图1:示例数据
图1:示例数据

 

第一步:选择分析方法

本例数据仅包含一个自变量(身高)与一个因变量(重量),构建简单的一元线性回归方程即可,依次单击spss的分析-回归-线性分析。

图2:线性回归分析
图2:线性回归分析

 

第二步:设定变量

分别将体重添加到因变量、将身高添加到自变量选项中,以研究身高对体重的影响。

图3:选择变量
图3:选择变量

 

第三步:设定统计量与图表

1.在回归系数中选择“估算值”,并设定“95%的置信区间”,进行回归系数的显著性检验与计算

2.选择“模型拟合”,了解模型的拟合度,判断方程的可用性,可同时勾选“描述”统计数值,查看平均值、方差等。

3.在残差分析中,选择“德宾-沃森(D-W)”检验,以了解残差是否存在自相关,检验模型是否具有统计学意义。

图4:统计量
图4:统计量

 

如果在回归方程中需要检验并设置常量,需在“选项”设置中选择“在方程中包括常量”。

图5:选项设置
图5:选项设置

 

最后,在spss图表中,选择标准化残差图中的“直方图”、“正态概率图”,检验回归方程的残差是否服从正态分布。

以上完成了spss的运算设置,可以正式运算数据,获得并解读运算结果。

图6:参考图表
图6:参考图表

 

第四步:检验残差的自相关性与正态性

获得运算结果后,首先进行回归方程的假设检验。

回归方程的德宾-沃森值为2.338,查阅德宾-沃森表得到,样本量n=30,控制变量数量k=1,其下临界值LD=1.134、上临界值UD=1.264。

根据判定规则,本例回归方程符合“如果UD

图7:D-W检验
图7:D-W检验

 

观察正态P-P图,数值分布接近于直线,说明残差的正态性良好,回归方程满足残差正态分布的假设。

图8:残差P-P图
图8:残差P-P图

 

第五步:检验方程拟合优度

Spss ANOVA分析,回归方程的显著性值为<0.001,小于0.05的置信空间,可以拒绝原假设,即身高与体重之间存在着显著的线性回归关系。

图9:ANOVA检验
图9:ANOVA检验

 

虽然回归方程存在显著的线性回归关系,但从调整后R方的数值(0.474)看到,回归方程的预测准确度不高,这可能与样本量比较少(样本量为30),或解释变量解释能力不足有关,也就是说影响体重的可能不止身高这一因素,需要加入其它解释变量。

图10:模型摘要
图10:模型摘要

 

二、spss线性回归分析方程怎么写

在判定回归方程显著、残差无自相关性、残差满足正态分布的前提下,可求得回归方程的回归系数,从而构建回归方程。

根据系数检验表,身高回归系数的显著性数值为0.00<0.05,可拒绝身高回归系数不显著的假设;而常量系数的显著性为0.825,无法拒绝常量系数不显著的假设。说明身高回归系数具有统计学意义,而常量系数不具有统计学意义,可构建y=0.383x的一元线性回归方程。

但需要注意的是,回归方程的调整后R方数值小于0.6,说明预测准确性不高,如果要进一步提高方程的准确性的话,提高拟合优度的,可能需要加入其它解释变量的数据,构建多元回归方程。

图11:选择变量
图11:选择变量

 

三、什么是ANOVA分析

在上述的线性回归分析中,我们使用到ANOVA分析来检验回归方程的显著性,那么,什么是ANOVA分析?在spss中怎么操作?

ANOVA分析,实际上就是常说的方差分析、F检验,用于检验两个或以上样本均数差异的显著性,其H0假设是多个样本总体均值相等,常用于研究变量间的影响、相关关系是否显著,spss中可通过单因素ANOVA检验、多因素ANOVA检验来进行操作。

图12:ANOVA检验
图12:ANOVA检验

 

比如在以上的身高与体重的线性相关关系研究中,其ANOVA分析原假设为多个不同身高样本的体重相等,而从检验结果看到,其F值为27.169,显著性<0.00,说明可以拒绝原假设,即多个不同身高样本的体重不相等,身高对体重有显著的影响。

图13:ANOVA分析结果
图13:ANOVA分析结果

 

四、小结

以上就是关于线性回归分析的基本步骤,spss线性回归分析方程怎么写的相关内容。spss的线性回归分析可通过设置德宾-沃森、残差正态P-P图等检验假设是否成立,并通过ANOVA分析、回归系数检验进一步检验回归方程的显著性,并求得回归方程。

 

作者:泽洋

展开阅读全文

标签:SPSSIBM SPSS Statistics一元线性回归分析SPSS教程非线性回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: