IBM SPSS Statistics 中文网站 > 使用技巧 > spss假设检验怎么做 spss假设检验的主要分析方法

spss假设检验怎么做 spss假设检验的主要分析方法

发布时间:2022/05/16 14:22:03

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss假设检验怎么做,一般需要先建立假设,然后选择spss分析方法计算统计量,再根据统计量值检验假设,并作出结论。spss假设检验的主要分析方法,包括正态性检验、方差齐性检验、相关性检验、参数检验、非参数检验等。

一、spss假设检验怎么做

spss假设检验怎么做?spss假设检验主要包括四个步骤:

1.建立假设,比如建立数据服从正态分布、方差齐性等假设

2.在spss中选择分析方法,选择合适的统计量作数据检验

3.在spss中进行的数据运算,计算检验统计量

4.根据统计量检验结果作出结论

接下来,我们以一组身高的数据具体演示spss假设检验怎么做。

第一步,建立假设:样本的身高数据服从正态分布。

图1:身高数据
图1:身高数据

 

第二步,在spss中选择检验数据的分析方法。

如图2所示,依次单击spss的分析-描述统计-探索分析选项,使用探索分析方法。

图2:探索分析
图2:探索分析

 

 

接着,如图3所示,将“体重”选入因变量列表框,将“性别”选入为因子列表框。

点击“图”设置,选中“描述图”中的“直方图”,直方图可直观地观察数据的分布是否服从正态分布;选中“含检验的正态图”,应用数值检验的方法检验身高数据的正态性。

图3:变量设置
图3:变量设置

 

第三步.在spss中运算数据,计算正态检验统计量。

从正态性检验得知数据的K-S结果为0.109,S-W结果为0.493。

第四步,根据统计量检验结果作出结论。

正态性检验包含了K-S结果与S-W结果,由于本例中的样本量比较少,仅有20个,因此需要采用K-S结果,其显著性为0.109>0.05,无法拒绝原假设,也就是说样本身高数据服从正态分布。

图4:正态性检验结果
图4:正态性检验结果

 

二、spss假设检验的主要分析方法

以上我们运用实例演示了spss的正态假设检验的方法,除了正态假设检验外,spss还包括了多种假设检验方法,其中包括方差齐性检验、相关性检验、参数检验、非参数检验,而相关性检验、参数检验、非参数检验也会包含多种具体的检验方法,主要的分析方法具体如下:

1. 相关性检验:皮尔逊系数检验、斯皮尔曼系数检验、Kendall's tau-b相关检验

2. 参数检验:单样本T检验、独立样本T检验、成对样本T检验、单因素方差分析、多因素方差分析、重复测量方差分析

3. 非参数检验:卡方检验,游程检验、二项检验、多独立样本的非参数检验

Spss可使用的数据类型、分析方法丰富而专业,因此也是很多科研、商业研究主要使用的分析工具。

图5:spss分析方法
图5:spss分析方法

 

三、spss假设检验结果怎么解读

Spss的假设检验方法这么多,其结果怎么解读呢?实际上,对于不同的检验方法,其检验统计量不同,解读的方法也不同,但基本思想都是通过检验统计量的显著性来判断是否有足够的把握拒绝原假设。

除了部分统计量需要通过查表的方式(比如dw值)判断显著性外,大部分统计量都可以通过P值与置信区间的判断,来进一步检验显著性。

以常用的方差分析(ANOVA分析)为例,在解读spss运算结果时,只需参考F值与显著性数值即可,无须进行复杂的运算,在置信区间为95%的情况下,显著性0.00<0.05,即可拒绝原假设,即自变量对因变量的相关关系有显著性,自变量对因变量有显著影响。因此,使用spss进行假设检验分析还是比较简单的。

图6:方差分析
图6:方差分析

 

四、小结

以上就是关于spss假设检验怎么做,spss假设检验的主要分析方法的相关内容。Spss的假设检验分析方法丰富而专业,可进行正态性、相关性、参数、非参数等常用检验方法的分析,其结果简单明了,解读起来也很简单。

 

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣