IBM SPSS Statistics 中文网站 > 使用技巧 > 利用IBM SPSS Statistics对问卷数据进行处理之样本分布

利用IBM SPSS Statistics对问卷数据进行处理之样本分布

发布时间:2021-09-13 11: 43: 30

在刚刚开始着手于一项研究时,利用问卷调查收集数据无疑是大多数人的选择,而如何处理收集到的数据有很多种方法,其中利用IBM SPSS Statistics软件来进行处理是比较方便且实用的,IBM SPSS Statistics软件的界面属于用户友好型,操作起来也较为简易。

本次我们主要探讨如何对收集到的数据进行样本分布研究,以及如何建立样本分布表。

一、打开数据文件

本例中使用的是关于社交媒体使用情况对大学生自我评价影响的研究问卷所收集到的数据。首先对数据进行整理,将问卷中的问题放在列中,并根据问题对其浓缩作为变量名,并将回答者的答案放在行中,整理结果如图1所示。

图1:示例数据
图1:示例数据

除此之外,还需将连续型变量如依赖度、喜爱度等的度量标准改为“度量”,具体如图2所示。

图2:连续型变量的编辑
图2:连续型变量的编辑

对于分类型变量如性别、年级,将其度量标准改为“名义”并进行值标签的编辑,方可进行后续操作,具体如图3所示。

图3:分类变量的编辑
图3:分类变量的编辑

二、计算新变量

从上图中可以看到,依赖度、喜爱度等不止在一道题中体现,因此我们需要将所有体现相同维度的变量整合到一起。

如图4所示,利用IBM SPSS Statistics中“转换”菜单下的“计算变量”来产生新变量。

图4:计算变量
图4:计算变量

然后,如图5所示,在目标变量处填写新变量的名称,在函数组中选择“统计量”,然后在下方反显的函数中选中Mean(即均值),将所有相关的变量放入数字表达式中,点击确定。

图5:计算新变量
图5:计算新变量

完成新变量的计算后,返回数据集,可以看到新变量已经出现在原有变量的右方,如图6所示。

图6:数据集中的新变量
图6:数据集中的新变量

三、样本分布的分析

完成数据的所有处理后,打开IBM SPSS Statistics分析菜单下的描述统计-交叉表,来对样本分布进行讨论,如图7所示。

图7:交叉表分析
图7:交叉表分析

样本分布主要是看性别、年龄、地区等,本次调查中只调查了性别与所在年级,故将性别放入行中,年级放入列中,并勾选单元格选项中的“列占比”,以及绘制复式条形图,对本次调查的样本特征进行分析,如图8、图9所示。

图8:交叉表选项
图8:交叉表选项

图9:单元格选项
图9:单元格选项

单击确定后,得到结果如下图10。我们可以发现本次调查中女生占绝大部分,这其中又以大四学生为主,这能够为之后分析结果的解释提供一些帮助。

图10:交叉表结果
图10:交叉表结果

本文中,我们重点讲解了怎样利用IBM SPSS Statistics对问卷样本分布进行分析,其中涉及到了数据的基础处理、新变量的计算以及交叉表分析。之后的讲解中,将会通过独立样本t检验、方差分析等对问卷数据进行分析与解释,欢迎访问IBM SPSS Statistics中文网站

作者:向风

展开阅读全文

标签:SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31
spss方差齐性检验如何操作 spss方差齐性检验怎么看方差齐不齐
方差的大小代表了数据分布的离散程度,方差大,数据分布越分散,方差小,数据分布越集中。组间数据分布离散程度差别较大时,是不能进行比较的,此时不能确定两组数据的差异来源于组间还是组内,因此方差齐性检验是进行组间数据比较的基础。关于SPSS方差齐性检验如何操作,SPSS方差齐性检验怎么看方差齐不齐,本文借助实例,向大家作简单介绍。
2023-10-25

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: