协方差分析是方差分析的延展扩充,主要用于判断协变量是否会对因变量产生显著影响,进而将无显著影响的协变量从自变量中分离,提高实验精确度。下面就通过讲解单因素协方差分析SPSS实例,单因素协方差分析结果解读来帮助大家更好地理解和掌握单因素协方差分析法。
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
逻辑回归适用于二分变量的模型,最显著的作用是可以预测模型中每个自变量的概率。也就是说,逻辑回归可以根据一组样本数据,得到预测值或者某种预测结果。下面,小编来介绍一下SPSS逻辑回归模型案例,逻辑回归和线性回归的区别的具体内容。
相关分析就是两个或两个以上的变量之间是否存在某种关系,比如空气中的湿度和降雨量、人的身高和体重等是否有相关关系。那么我们如何使用SPSS对数据进行双变量相关分析?
相关分析研究的是两个或以上随机变量间的相关关系的分析。与回归分析不同,相关分析侧重的是变量间的相关特性,但不能说明变量间可相互依赖并进行预测,比如吃冰淇淋与肥胖之间的相关分析。
在《如何使用SPSS检验两变量间相关关系之散点图》一文中,我们通过散点图研究发现,客流量与销售额之间存在着正相关的关系,而客单价与销售额之间似乎不存在相关关系。
在大数据被广泛运用的今天,数据已经成为企业之间非常重要的竞争点之一。而作为与数据打交道最密切的职业——数据分析师,也将迎来了黄金就业期。据艾瑞研究统计,在过去的两年中,由于各行各业新聘用了80万名数据科学家,数据科学岗位的短缺问题已大大缓解;但是今天市场上仍然有成千上万的空缺职位,其中大部分在美国和中国。
非参数检验是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。今天,我就向大家演示一下SPSS非参数检验步骤,SPSS非参数检验结果解读。
spss假设检验怎么做,一般需要先建立假设,然后选择spss分析方法计算统计量,再根据统计量值检验假设,并作出结论。spss假设检验的主要分析方法,包括正态性检验、方差齐性检验、相关性检验、参数检验、非参数检验等。
非参数分析适用于数据分布呈偏态,数据方差不齐性等状态,可信度与参数分析相比有所下降,当然使用条件也更为宽松,我们可以借助IBM SPSS Statistics进行非参数分析,本文以大家比较感兴趣的非参数分析t检验和两两比较为例,向大家介绍SPSS非参数分析t检验,SPSS非参数分析两两比较的实施过程。
微信公众号