IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > IBM SPSS Statistics如何对数据进行双变量相关分析

IBM SPSS Statistics如何对数据进行双变量相关分析

发布时间:2021/07/27

相关分析就是两个或两个以上的变量之间是否存在某种关系,比如空气中的湿度和降雨量、人的身高和体重等是否有相关关系。那么我们如何使用SPSS对数据进行双变量相关分析?

在这次教程中,我们给大家演示IBM SPSS Statistics如何对数据进行双变量相关分析的教程。下面我们使用IBM SPSS Statistics 28(win10)详细演示一遍吧。

  1. 相关关系

因为相关关系的程度不同,相关关系还可以分为完全相关、完全不相关、不完全相关。比如人的年龄和性别就是完全不相关变量、两者相对独立的。湿度和降雨量就是完全相关关系。

还有按照相关的方向,我们可以分为正相关和负相关,正相关是指自变量增长,因变量也随着增长,比如在时间一定的情况下,汽车的速度越快,跑的路程越远,说明速度和路程成正相关关系,负相关则相反。

  1. 相关分析

我们这里从调查数据中分析“年级”和“知识目标”,如图1所示。分析两者存在哪种相关关系,是正相关还是负相关。

图1:样本数据
图1:样本数据

首先在SPSS的数据编辑器中选择“分析”菜单,点击“相关—双变量”选项,如图2所示。

图2:双变量相关分析选项
图2:双变量相关分析选项

在“双变量相关性”弹窗中,将左侧栏的“年龄”和“知识目标”拖动到变量框中,然后点击“选项”,如图3所示。

图3:双变量相关性
图3:双变量相关性

在“选项”弹窗中,首先在统计中勾选“均值和标准差”,接着缺失值默认点击继续,然后回到上一窗口,相关系数勾选“皮尔逊”,显著性检验勾选“双尾”,最后点击“确定”,如图4所示。

图4:选项、相关系数和显著性检验设置
图4:选项、相关系数和显著性检验设置

在输出文档中,我们直接看“相关性”表格,首先看显著性系数也就是P值,这里的P值小于0.05,说明是两个变量相关性显著,最后看到皮尔逊系数大于0,说明是正相关关系。如图5所示。

好了,以上就是IBM SPSS Statistics如何对数据进行双变量相关分析的详细教程,如还需了解学习更多有关IBM SPSS Statistics的相关知识,敬请访问IBM SPSS Statistics中文网。

作者:茂杨

标签:SPSS双变量

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07