IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用IBM SPSS Statistics进行数据的标椎化、中心化、归一化处理

如何使用IBM SPSS Statistics进行数据的标椎化、中心化、归一化处理

发布时间:2021-07-26 13: 12: 48

我们在数据分析之前,为了避免后面数据分析出现更多的误差,首先要进行数据标椎化、中心化、归一化处理。那么我们用IBM SPSS Statistics如何操作呢?

在这次教程中,我们给大家演示IBM SPSS Statistics如何进行数据的标椎化、中心化、归一化处理的教程。下面我们使用IBM SPSS Statistics 28(win10)详细演示一遍吧。

  1. 标椎化处理

这里我们提前准备了SPSS数据,首先我们找到“分析”菜单,点击“描述统计—描述”,如图1所示。

图1:打开描述统计—描述
图1:打开描述统计—描述

这里我们将“知识目标”变量标椎化,首先选中“知识目标”,并移动到“变量”,然后勾选“将标椎化值另存为变量”,最后点击“确定”即可,如图2所示。

图2:标椎化“知识目标”变量
图2:标椎化“知识目标”变量

这里我们不关心输出文档中的描述统计表格,可以看到数据编辑器中的最后一列数据就是我们需要的,如图3所示。

图3:“知识目标”标椎化后的数据
图3:“知识目标”标椎化后的数据
  1. 中心化处理

中心化处理就是单个数据减去总平均值,经过中心化处理后,原数据的坐标平移至中心点(0,0),该组数据的均值变为0,以此也被称为零均值化。首先在数据编辑器中点击“转换”菜单中的“计算变量”,如图4所示。

图4:计算变量选项
图4:计算变量选项

在新窗口中的“目标变量”输入“中心化得分”,然后在“数学表达式”中输入“知识目标-3.02”,平均值可在描述统计中查询,最后点击“确定”即可,如图5所示。

图5:计算中心化得分变量
  1. 归一化处理

数据归一化处理就是原始数据减去最小值的差除以最大值减去最小值的差。把数变为(0,1)之间的数,主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。首先我们也是点击“计算变量”如图4所示。

在新窗口中的“目标变量”输入“归一化得分”,然后在“数学表达式”中依据公式输入“(知识目标-2)/(4-2)”,最值可在描述统计中查询,最后点击“确定”即可,如图6所示。

图6:计算归一化得分变量
图6:计算归一化得分变量

最后我们看看标椎化、中心化、归一化处理后的数据,如图7所示。

图7:标椎化、中心化、归一化处理后的数据
图7:标椎化、中心化、归一化处理后的数据

好了,以上就是IBM SPSS Statistics如何进行数据的标椎化、中心化、归一化处理的详细教程,如还需了解学习更多有关IBM SPSS Statistics的相关知识,敬请访问IBM SPSS Statistics中文网。

作者:茂杨

展开阅读全文

标签:SPSS归一化处理

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。