SPSS > 使用技巧 > IBM SPSS Statistics中非线性回归模型表达式的设定

IBM SPSS Statistics中非线性回归模型表达式的设定

发布时间:2021-07-28 11: 18: 15

虽然很多数据都呈现线性相关的关系,但在实际研究中,更多的数据是呈现非线性相关的,对于这部分数据,就需要采用非线性回归的分析方法。

IBM SPSS Statistics非线性回归使用的前提是,我们已对数据作一定的分析,并已明确知道其符合具体哪种曲线,并可构建出曲线对应的模型表达式。这听起来还是比较难的,我们先来攻克下模型表达式的构建。

一、非线性回归

本次使用的是一组包含促销费用与销售额的数据,以探究促销费用与销售额之间的关系。

图1:促销费用与销售额
图1:促销费用与销售额

非线性回归属于SPSS的回归分析,可在分析菜单的回归方法中使用到。

图2:非线性回归
图2:非线性回归

如图3所示,SPSS非线性回归的一个重要内容是填入模型表达式,实际上,SPSS的非线性回归是采用迭代方法对设置的曲线模型进行拟合,因此,必须先确定其曲线模型的表达式。

图3:模型表达式
图3:模型表达式

二、运用散点图分析数据的分布

如果刚开始对数据的分布特点毫无头绪,可先使用SPSS的图表构建器,观察数据的分布特点。

图4:模型选择
图4:模型选择

如图5所示,选用散点图,并将销售额拖放到Y轴、促销费用拖放到X轴。注意,此时显示的散点图只是图例,需单击“确定”才能得出运算结果。

图5:构建散点图
图5:构建散点图

根据以上的散点图维度设置,可获得如图6所示的销售额与促销费用的散点图,可以看到,在较低促销费用时,销售额与促销费用呈现近乎线性的关系,但随着促销费用的提升,销售额的增加幅度变小。

图6:销售额与促销费用散点图
图6:销售额与促销费用散点图

三、运用曲线估算表达式

由于本例研究的是单个自变量与因变量的非线性关系,因此,可采用曲线估算的方法先得出曲线模型的表达式。

依次单击分析-回归-曲线估算,启用曲线估算分析法。

图7:曲线估算
图7:曲线估算

如图8所示,在曲线估算设置中,将销售额设为因变量、促销费用设为独立变量,并勾选线性、二次、复合、对数、指数模型。

图8:变量设置
图8:变量设置

运算结果如图9所示,对数方程的R方(衡量回归方程的拟合优度)为0.937,拟合程度很好,优于其他的方程式。

图9:模型摘要
图9:模型摘要

带拟合曲线的散点图,如图10所示,对数曲线模型拥有更优的拟合程度。

图10:曲线
图10:曲线

双击对数曲线,如图11所示,对数曲线对应的模型表达式可写为y=8.5558+6.442*log(X)。

图11:对数方程式
图11:对数方程式

四、小结

综上所述,IBM SPSS Statistics对于简单的单个自变量的非线性回归,可采用先观察散点图,后进行曲线估算的方式,获取曲线对应模型的表达式后,再进行后续的SPSS非线性回归分析。

作者:泽洋

展开阅读全文

标签:IBM SPSS Statistics非线性回归SPSS非线性回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: