IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS进行一元线性回归分析

如何使用SPSS进行一元线性回归分析

发布时间:2021/01/28

回归分析,实际上构建的就是数学模型,通过研究一组随机变量与另一组变量之间的关系,构建或简单的、或复杂的数学方程式,并以此预测因变量的值。如果自变量与因变量之间存在着线性关系,就会构建线性模型,也就是常见的线性回归模型。

线性回归模型如果仅包含一个自变量的话,可构建简单的一元线性回归分析;如果包含多个自变量的话,则构建多元线性回归分析。本文将针对比较简单的一元线性回归分析,介绍如何使用IBM SPSS Statistics的线性回归功能。

一、使用的数据

一元线性回归衡量的是一个自变量x和一个因变量y的线性关系。鉴于该特点,我们会使用一组包含客流量和销售额的数据,研究客流量作为自变量、销售额作为因变量之间的线性关系。

图1:示例数据

二、应用线性回归分析

如图2所示,依次单击分析-回归-线性选项,打开偏线性回归设置面板。

图2:线性回归分析

1、选择变量

在线性回归设置面板中,首先需要分别将销售额、客流量分别添加到右侧因变量、自变量方框中。

图3:选择变量

2、指定进入方法

然后,再对线性回归指定进入的方式,其方法含义如下:

1.输入,将自变量全部放入回归模型

2.步进,按照自变量贡献度、剔除与否来决定自变量是否放入回归模型

3.除去,先建立全自变量模型,然后再根据条件剔除自变量

4.后退,与除去相似,也是先建立全自变量模型,不同的是,后退是通过逐次剔除的方式剔除自变量

5.前进,将自变量逐次添加进模型

由于本例分析的是简单的一元线性回归方程,可以按照默认选择“输入”。

图4:进入方法

3、统计相关设置

接着,打开选项设置面板,指定回归系数、残差分析等统计数值。回归系数即构建线性回归方程中的系数,可勾选“估算值”。

为了了解模型预测的准确度,需要勾选“模型拟合”选项,了解模型的拟合度,并结合“描述”统计数值,查看平均值、方差等。

另外,在求得一元线性回归方程后,为了检验模型是否具有统计学意义,需分析其残差是否存在自相关,鉴于此,需勾选残差分析中的“德宾-沃森(D-W)”检验。

图5:统计方法

4、标准化残差图

同时,在图选项中,勾选标准化残差图中的“直方图”、“正态概览图”,分析残差的自相关性、正态性。

图6:标准化残差图

5、选项设置

如果进入方法中选择“步进法”,可在选项中指定使用F概率或F值的形式。另外,回归方程中如需包含常量,需勾选“在方程中包括常量”。

图7:选项设置

三、小结

IBM SPSS Statistics的线性回归分析,可构建多个自变量与多个因变量的线性回归方程,并以此进行因变量值的预测,而一元线性回归方程是其中比较简单的线性回归分析,多用于分析影响因变量中的关键因素。

如需获取关于SPSS一元线性回归分析的结果解读,可前往IBM SPSS Statistics中文网站搜索《应用SPSS一元线性回归简单预测销售》一文。

作者:泽洋

标签:IBM SPSS Statistics一元线性回归分析

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07
SPSS数据合并之如何进行变量合并
在存在多个数据源的情况下,经常会使用到IBM SPSS Statistics的数据合并功能,对多个数据源的数据进行合并。
2020-11-13
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09