IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS进行一元线性回归分析

如何使用SPSS进行一元线性回归分析

发布时间:2021/01/28 11:50:46

回归分析,实际上构建的就是数学模型,通过研究一组随机变量与另一组变量之间的关系,构建或简单的、或复杂的数学方程式,并以此预测因变量的值。如果自变量与因变量之间存在着线性关系,就会构建线性模型,也就是常见的线性回归模型。

线性回归模型如果仅包含一个自变量的话,可构建简单的一元线性回归分析;如果包含多个自变量的话,则构建多元线性回归分析。本文将针对比较简单的一元线性回归分析,介绍如何使用IBM SPSS Statistics的线性回归功能。

一、使用的数据

一元线性回归衡量的是一个自变量x和一个因变量y的线性关系。鉴于该特点,我们会使用一组包含客流量和销售额的数据,研究客流量作为自变量、销售额作为因变量之间的线性关系。

图1:示例数据

二、应用线性回归分析

如图2所示,依次单击分析-回归-线性选项,打开偏线性回归设置面板。

图2:线性回归分析

1、选择变量

在线性回归设置面板中,首先需要分别将销售额、客流量分别添加到右侧因变量、自变量方框中。

图3:选择变量

2、指定进入方法

然后,再对线性回归指定进入的方式,其方法含义如下:

1.输入,将自变量全部放入回归模型

2.步进,按照自变量贡献度、剔除与否来决定自变量是否放入回归模型

3.除去,先建立全自变量模型,然后再根据条件剔除自变量

4.后退,与除去相似,也是先建立全自变量模型,不同的是,后退是通过逐次剔除的方式剔除自变量

5.前进,将自变量逐次添加进模型

由于本例分析的是简单的一元线性回归方程,可以按照默认选择“输入”。

图4:进入方法

3、统计相关设置

接着,打开选项设置面板,指定回归系数、残差分析等统计数值。回归系数即构建线性回归方程中的系数,可勾选“估算值”。

为了了解模型预测的准确度,需要勾选“模型拟合”选项,了解模型的拟合度,并结合“描述”统计数值,查看平均值、方差等。

另外,在求得一元线性回归方程后,为了检验模型是否具有统计学意义,需分析其残差是否存在自相关,鉴于此,需勾选残差分析中的“德宾-沃森(D-W)”检验。

图5:统计方法

4、标准化残差图

同时,在图选项中,勾选标准化残差图中的“直方图”、“正态概览图”,分析残差的自相关性、正态性。

图6:标准化残差图

5、选项设置

如果进入方法中选择“步进法”,可在选项中指定使用F概率或F值的形式。另外,回归方程中如需包含常量,需勾选“在方程中包括常量”。

图7:选项设置

三、小结

IBM SPSS Statistics的线性回归分析,可构建多个自变量与多个因变量的线性回归方程,并以此进行因变量值的预测,而一元线性回归方程是其中比较简单的线性回归分析,多用于分析影响因变量中的关键因素。

如需获取关于SPSS一元线性回归分析的结果解读,可前往IBM SPSS Statistics中文网站搜索《应用SPSS一元线性回归简单预测销售》一文。

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣