IBM Business Partner

IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS中非线性回归初始值设定与结果解读

SPSS中非线性回归初始值设定与结果解读

发布时间:2021/07/29

《SPSS中非线性回归模型表达式的设定》一文中,我们已经使用散点图与曲线估算,推断了数据的曲线模型表达式。

接下来,本文将继续完成非线性回归中的初始值设定与运算结果解读。

一、回顾模型表达式

在上文中,我们已经将数据的曲线模型表达式推断为y=8.5558+6.442*log(X)。为什么我们不能直接使用曲线估算的结果?实际上,曲线估算的方程式可作为非线性回归参数估算结果使用,但其结果并非是最优的结果,运用IBM SPSS Statistics的非线性回归可通过迭代的方式,拟合出最优的参数估算结果。


图1:对数方程式

实际上,除了使用曲线估算的模型表达式外,我们也可根据数据分布的特点选择使用不同的回归方程。图2所示包含了部分常用的SPSS模型表达式。

图2:SPSS模型表达式
图2:SPSS模型表达式

二、代入对数方程式

接下来,开启SPSS的非线性回归。

图3:非线性回归
图3:非线性回归

运用SPSS的表达式输入工具,将曲线模型表达式y=b1+b2*log(X)填写到模型表达式中。其中,销售额为因变量,促销费用为自变量。

图4:代入方程式
图4:代入方程式

三、设定初始值

接着,进行非线性回归的参数设定,该设定实际上设置的是参数的初始值,SPSS会根据设定的初始值进行迭代运算。

我们会使用到曲线估算的参数作为初始值,即b1为8.5,b2为6.4。

图5:初始值参数
图5:初始值参数

四、解读分析结果

根据以上非线性回归的运算设置,SPSS进行了三次的迭代运算。

图6:迭代历史

并获得如图7所示的最优参数估算值,其标准误差均未超过1,误差较小,并且估算值位于95%的置信区间,方程式可写为:y=8.556+14.834*log(X)

图7:参数估计量
图7:参数估计量

最后,我们看一下ANOVA分析结果,如图8所示,模型的R方为0.937,接近于1,说明该模型具有很好的拟合优度。

图8:拟合优度

五、小结

综上所述,SPSS非线性回归操作重点在于已知数据的模型表达式,并据此推断了参数的初始值,作为迭代参数的初始值进行运算。

作者:泽洋

标签:SPSS非线性回归

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
如何用SPSS计算个人BMI值?
BMI即体重指数,是衡量个人身体质量的一个重要参数,通过判断BMI的数值大小,我们可以判断个人身高与体重是否协调。下面我将用IBM SPSS Statistics来为大家介绍BMI的计算方法。
2021-03-19
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23
使用SPSS进行回归分析的方法总结
IBM SPSS Statistics 是强大的统计软件平台,SPSS全称Statistical Product and Service Solutions(统计产品与服务解决方案), SPSS可以帮助我们分析并更好地了解数据,以解决复杂的业务和研究问题。如今,SPSS已经被广泛运用于数据分析等各个领域。
2021-03-09
如何使用SPSS检验数据是否服从正态分布—偏度峰度系数
在《如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图》一文中,我们了解了如何使用KS检验、Q-Q图来验证数据的正态性。接下来,本文将会继续讲解如何使用IBM SPSS Statistics的描述统计(偏度峰度系数)、探索统计检验(正态检验)数据的正态性。
2021-01-07