
发布时间:2021/07/29 11:14:18
在《SPSS中非线性回归模型表达式的设定》一文中,我们已经使用散点图与曲线估算,推断了数据的曲线模型表达式。
接下来,本文将继续完成非线性回归中的初始值设定与运算结果解读。
一、回顾模型表达式
在上文中,我们已经将数据的曲线模型表达式推断为y=8.5558+6.442*log(X)。为什么我们不能直接使用曲线估算的结果?实际上,曲线估算的方程式可作为非线性回归参数估算结果使用,但其结果并非是最优的结果,运用IBM SPSS Statistics的非线性回归可通过迭代的方式,拟合出最优的参数估算结果。
实际上,除了使用曲线估算的模型表达式外,我们也可根据数据分布的特点选择使用不同的回归方程。图2所示包含了部分常用的SPSS模型表达式。
二、代入对数方程式
接下来,开启SPSS的非线性回归。
运用SPSS的表达式输入工具,将曲线模型表达式y=b1+b2*log(X)填写到模型表达式中。其中,销售额为因变量,促销费用为自变量。
三、设定初始值
接着,进行非线性回归的参数设定,该设定实际上设置的是参数的初始值,SPSS会根据设定的初始值进行迭代运算。
我们会使用到曲线估算的参数作为初始值,即b1为8.5,b2为6.4。
四、解读分析结果
根据以上非线性回归的运算设置,SPSS进行了三次的迭代运算。
并获得如图7所示的最优参数估算值,其标准误差均未超过1,误差较小,并且估算值位于95%的置信区间,方程式可写为:y=8.556+14.834*log(X)
最后,我们看一下ANOVA分析结果,如图8所示,模型的R方为0.937,接近于1,说明该模型具有很好的拟合优度。
五、小结
综上所述,SPSS非线性回归操作重点在于已知数据的模型表达式,并据此推断了参数的初始值,作为迭代参数的初始值进行运算。
作者:泽洋
读者也喜欢这些内容:
spss散点图怎么看线性关系 spss散点图如何添加辅助线
当不需要对线性回归分析进行统计学检验时,我们可以利用SPSS图形绘制功能,对数据进行简单的线性回归分析。在SPSS散点图绘制功能中,可以绘制回归曲线,查看数据线性回归方程,并且可以查看线性回归系数R。SPSS散点图怎么看线性关系,SPSS散点图如何添加辅助线?本文结合实例,向大家做简单的介绍。...
阅读全文 >
spss线性回归怎么做 spss线性回归图的绘制
通过相关性分析,我们可以了解一个变量是否随另一个变量的变化而变化,但是无法通过控制一个变量,对另一个变量产生影响。通过线性回归分析,可以建立两个变量间的回归方程,较为精确的解释两个变量变化的关系,从而达到控制的目的,我们一般通过专业的统计分析软件进行线性回归分析,如SPSS。关于SPSS线性回归怎么做,SPSS线性回归图的绘制步骤是什么的问题,本文结合实例向大家做简单的介绍。...
阅读全文 >
spss线性回归残差图怎么做 spss线性回归残差图分析解读
在线性回归分析过程中,对数据进行统计学检验是非常必要的,否则即便得出R方接近1的回归分析结果也不具有实际的意义,在众多的数据检验中,残差图的绘制尤为重要,残差图可以观测数据是否独立,方差是否齐性,当然手工绘制残差图非常麻烦,需要进行大量的计算,利用专业的统计分析软件如SPSS,我们可以非常简便的绘制残差图,下面就让我们结合实际案例,了解如何使用SPSS制作线性回归残差图,并说明在使用SPSS线性回归残差图进行分析时,需要注意的一些问题。...
阅读全文 >
SPSS回归方程怎么写 SPSS回归方程系数怎么看
回归分析是数据分析中常用的分析方法之一,它旨在确定两种或两种以上变量间相互依赖的定量关系。简单来说,回归分析就是分析变量X对变量Y的影响,那么SPSS回归方程怎么写,SPSS回归方程系数怎么看呢?今天就一起来看看吧。...
阅读全文 >