IBM SPSS Statistics 中文网站 > 使用技巧 > spss回归分析是干嘛的 spss回归分析r方为多少合适

spss回归分析是干嘛的 spss回归分析r方为多少合适

发布时间:2022/06/21 11:06:04

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss回归分析是干嘛的?spss回归分析是用于研究变量之间关系的方法,以找出模拟变量关系的最佳模型。spss回归分析r方为多少合适?一般来说,spss回归分析结果r方越接近1,方程拟合效果越好。

一、spss回归分析是干嘛的

spss回归分析是数据统计分析中常用的一种统计分析方法,有着很广泛的应用。其中,

1. 从分析原理来说,spss回归分析是用于研究自变量与因变量关系的分析方法,以找出自变量与因变量之间的函数关系,构建最佳的模拟方程,用于描述变量之间的关系、作出数据预测等。

2. 从应用范围来说,spss回归分析的应用范围很广,涉及到科学研究、商业研究、数据预测、模型构建等众多领域,可用于进行商业领域的销售预测、产品质量控制,科学研究领域的模型构建、气象预测等。

3. 从研究方法来说,如图1所示,可以看到,spss回归分析包括了多种不同类型的分析方法,如线性回归、曲线回归、非线性回归、Logistic回归等,可用于研究一个自变量与因变量、多个自变量与因变量、定性变量与定量变量间的关系,研究范围十分广泛。

spss回归分析
spss回归分析

 

二、spss回归分析r方为多少合适

spss回归分析常会应用r方来判断模拟方程的拟合程度,即方程模拟数据关系的能力。那么,spss回归分析中的r方是什么?r方为多少合适?

从数理角度来理解,r方计算的是回归平方和与总平方和的比率,数学表达式为R2=SSR/SST,其中SSR为回归平方和,SST为总平方和,用于测量回归模型能够解释的方差占因变量方差的百分比。

如果手动计算的话会比较繁琐,在spss的回归分析中,可使用“模型拟合”统计量自动计算r方,解读结果时,只需根据spss得出的r方判断方程的拟合优度即可。

模型拟合
模型拟合

 

r方主要是表示模拟方程中自变量对因变量的解释能力,其取值范围为0-1,理想情况来说,r方当然是越接近于1越好,部分研究问题会要求r方至少要达到0.6。

对于一些多自变量的研究问题,r方的数值可能会很高,但方程拟合效果不一定好,因此还需结合研究问题的实际情况决定,但总体原则是越接近1越好,最好大于0.6。

对于多自变量的问题,spss的回归分析会同时提供调整后r方的结果,该结果可以更加准确地反映模型的拟合程度,因其修正了多自变量对r方数值的影响,当模型自变量比较多时,更建议查看调整后r方的结果,其取值也是0-1,也是越接近1拟合效果越好。

系统聚类分析
系统聚类分析

 

三、spss曲线回归是什么

spss回归分析除了提供常用的线性回归功能外,还提供了实用性更强的曲线回归功能。

曲线回归在自变量与因变量(定量变量)的关系模型未知的情况下,可设置多种模型检验分析,比如线性、二次、三次、增长、指数模型等。通过对比不同回归方程的r方与显著性检验数值,可判断哪一种模型更适用,相比于逐个回归方程分析运算,曲线回归能提供更便捷的分析方式。

曲线回归
曲线回归

 

spss的曲线回归运算结果如图5所示,包含r方、F值、显著性P值以及回归方程的参数估算值。

通过对比r方可得到“三次回归方程”的r方最高,达到0.956,其他线性、二次、增长、指数等回归方程也有0.9以上的r方。

根据显著性P值<0.001,说明以上回归方程在95%的置信水平下都拥有显著性,即自变量对因变量有显著影响,结合r方的数值,可选用三次回归方程,其数学表达式可根据参数估算值撰写如下:y=8.495-2.725x1+1.688x2-0.071x3

参数估算值
参数估算值

 

四、小结

以上就是关于spss回归分析是干嘛的,spss回归分析r方为多少合适的相关内容。spss回归分析提供的分析方法丰富,应用广泛,是一种很常用的变量关系分析方法,对于定量变量关系未知的情况,可尝试曲线回归,以更加便捷的分析方式进行多种回归方程的模拟运算。

 

作者:泽洋

SPSS Statistics
云版首发!秒杀只需1分钱!
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
1分钱秒杀!云版大数据统计与应用分析解决方案上线
在经历了数个月的悉心筹备后,云版大数据统计与应用分析解决方案终于要和大家见面了!为了让更多人能体验到本服务,我们特别发起了限量1分钱秒杀活动。
2022-11-24
spss缺失值分析步骤 spss缺失值分析结果怎么看
在数据调查过程中,工作人员常常会遇到数据缺失现象。数据缺失分为三类,随机缺失,完全随机缺失,非随机缺失。无论哪种缺失,都可能导致严重的问题,或者大大降低统计的精度。利用IBM SPSS Statistics可以对数据缺失值进行分析,关于SPSS缺失值分析步骤是怎样的,SPSS缺失值分析结果怎么看的问题?本文结合实例,为大家做简单介绍。
2022-11-24
spss标签值不显示 spss标签值乱码
使用IBM SPSS Statistics进行统计分析的过程中,为了工作便利,常常会为变量设置标签。在设置标签过程中,常常会遇到各种问题,如SPSS标签值不显示,SPSS标签值乱码等问题,这些问题产生的根源是什么?如何解决?本文向大家做简单介绍。
2022-11-21
IBM SPSS Statistics云版本登录使用教程
感谢您订阅IBM SPSS Statistics云版本服务,IBM SPSS Statistics云版本是由思杰马克丁+IBM+阿里云联合推出,帮助用户解决短时间使用正版软件的需求,提供周付费、月付费两种购买模式,性价比极高。那么在购买了IBM SPSS Statistics云版本之后,应该如何登陆使用呢,本篇教程就来告诉大家使用方法。
2022-11-23
spss中t值和p值是什么意思 spss中t值和p值的关系
在统计分析过程中,常常会遇到这样的情况:检验两个相关的样本是否来自具有相同均值的总体,就会用到t检验。t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布, t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。利用IBM SPSS Statistics统计分析软件进行t检验可以避免繁杂的统计学计算,快速给出结果,供用户分析。SPSS中t值和p值是什么意思,SPSS中t值和p值的关系是什么,本文结合实例,向大家做简单的介绍。
2022-11-16
spss pearson相关性分析步骤 spss pearson相关性分析结果怎么看
Pearson(皮尔逊)相关性指的是联合分布服从二维正态分布的随机变量X,Y之间的简单线性相关关系,X,Y之间的相关关系由简单相关系数r表示。利用IBM SPSS Statistics可以非常快速地完成两个随机变量X,Y间的Pearson(皮尔逊)相关性分析,SPSS Pearson相关性分析步骤是什么,SPSS Pearson相关性分析结果怎么看,本文结合实例,向大家做简单的介绍。
2022-11-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣