IBM SPSS Statistics 中文网站 > 使用技巧 > spss回归分析是干嘛的 spss回归分析r方为多少合适

spss回归分析是干嘛的 spss回归分析r方为多少合适

发布时间:2022-06-21 11: 06: 04

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss回归分析是干嘛的?spss回归分析是用于研究变量之间关系的方法,以找出模拟变量关系的最佳模型。spss回归分析r方为多少合适?一般来说,spss回归分析结果r方越接近1,方程拟合效果越好。

一、spss回归分析是干嘛的

spss回归分析是数据统计分析中常用的一种统计分析方法,有着很广泛的应用。其中,

1. 从分析原理来说,spss回归分析是用于研究自变量与因变量关系的分析方法,以找出自变量与因变量之间的函数关系,构建最佳的模拟方程,用于描述变量之间的关系、作出数据预测等。

2. 从应用范围来说,spss回归分析的应用范围很广,涉及到科学研究、商业研究、数据预测、模型构建等众多领域,可用于进行商业领域的销售预测、产品质量控制,科学研究领域的模型构建、气象预测等。

3. 从研究方法来说,如图1所示,可以看到,spss回归分析包括了多种不同类型的分析方法,如线性回归、曲线回归、非线性回归、Logistic回归等,可用于研究一个自变量与因变量、多个自变量与因变量、定性变量与定量变量间的关系,研究范围十分广泛。

spss回归分析
spss回归分析

 

二、spss回归分析r方为多少合适

spss回归分析常会应用r方来判断模拟方程的拟合程度,即方程模拟数据关系的能力。那么,spss回归分析中的r方是什么?r方为多少合适?

从数理角度来理解,r方计算的是回归平方和与总平方和的比率,数学表达式为R2=SSR/SST,其中SSR为回归平方和,SST为总平方和,用于测量回归模型能够解释的方差占因变量方差的百分比。

如果手动计算的话会比较繁琐,在spss的回归分析中,可使用“模型拟合”统计量自动计算r方,解读结果时,只需根据spss得出的r方判断方程的拟合优度即可。

模型拟合
模型拟合

 

r方主要是表示模拟方程中自变量对因变量的解释能力,其取值范围为0-1,理想情况来说,r方当然是越接近于1越好,部分研究问题会要求r方至少要达到0.6。

对于一些多自变量的研究问题,r方的数值可能会很高,但方程拟合效果不一定好,因此还需结合研究问题的实际情况决定,但总体原则是越接近1越好,最好大于0.6。

对于多自变量的问题,spss的回归分析会同时提供调整后r方的结果,该结果可以更加准确地反映模型的拟合程度,因其修正了多自变量对r方数值的影响,当模型自变量比较多时,更建议查看调整后r方的结果,其取值也是0-1,也是越接近1拟合效果越好。

系统聚类分析
系统聚类分析

 

三、spss曲线回归是什么

spss回归分析除了提供常用的线性回归功能外,还提供了实用性更强的曲线回归功能。

曲线回归在自变量与因变量(定量变量)的关系模型未知的情况下,可设置多种模型检验分析,比如线性、二次、三次、增长、指数模型等。通过对比不同回归方程的r方与显著性检验数值,可判断哪一种模型更适用,相比于逐个回归方程分析运算,曲线回归能提供更便捷的分析方式。

曲线回归
曲线回归

 

spss的曲线回归运算结果如图5所示,包含r方、F值、显著性P值以及回归方程的参数估算值。

通过对比r方可得到“三次回归方程”的r方最高,达到0.956,其他线性、二次、增长、指数等回归方程也有0.9以上的r方。

根据显著性P值<0.001,说明以上回归方程在95%的置信水平下都拥有显著性,即自变量对因变量有显著影响,结合r方的数值,可选用三次回归方程,其数学表达式可根据参数估算值撰写如下:y=8.495-2.725x1+1.688x2-0.071x3

参数估算值
参数估算值

 

四、小结

以上就是关于spss回归分析是干嘛的,spss回归分析r方为多少合适的相关内容。spss回归分析提供的分析方法丰富,应用广泛,是一种很常用的变量关系分析方法,对于定量变量关系未知的情况,可尝试曲线回归,以更加便捷的分析方式进行多种回归方程的模拟运算。

 

作者:泽洋

展开阅读全文

标签:一元线性回归分析回归分析二元回归分析有序回归分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: