SPSS > 使用技巧 > spss回归分析是干嘛的 spss回归分析r方为多少合适

spss回归分析是干嘛的 spss回归分析r方为多少合适

发布时间:2022-06-21 11: 06: 04

品牌型号:联想GeekPro 2020

系统: Windows 10 64位专业版

软件版本: IBM SPSS Statistics

spss回归分析是干嘛的?spss回归分析是用于研究变量之间关系的方法,以找出模拟变量关系的最佳模型。spss回归分析r方为多少合适?一般来说,spss回归分析结果r方越接近1,方程拟合效果越好。

一、spss回归分析是干嘛的

spss回归分析是数据统计分析中常用的一种统计分析方法,有着很广泛的应用。其中,

1. 从分析原理来说,spss回归分析是用于研究自变量与因变量关系的分析方法,以找出自变量与因变量之间的函数关系,构建最佳的模拟方程,用于描述变量之间的关系、作出数据预测等。

2. 从应用范围来说,spss回归分析的应用范围很广,涉及到科学研究、商业研究、数据预测、模型构建等众多领域,可用于进行商业领域的销售预测、产品质量控制,科学研究领域的模型构建、气象预测等。

3. 从研究方法来说,如图1所示,可以看到,spss回归分析包括了多种不同类型的分析方法,如线性回归、曲线回归、非线性回归、Logistic回归等,可用于研究一个自变量与因变量、多个自变量与因变量、定性变量与定量变量间的关系,研究范围十分广泛。

spss回归分析
spss回归分析

 

二、spss回归分析r方为多少合适

spss回归分析常会应用r方来判断模拟方程的拟合程度,即方程模拟数据关系的能力。那么,spss回归分析中的r方是什么?r方为多少合适?

从数理角度来理解,r方计算的是回归平方和与总平方和的比率,数学表达式为R2=SSR/SST,其中SSR为回归平方和,SST为总平方和,用于测量回归模型能够解释的方差占因变量方差的百分比。

如果手动计算的话会比较繁琐,在spss的回归分析中,可使用“模型拟合”统计量自动计算r方,解读结果时,只需根据spss得出的r方判断方程的拟合优度即可。

模型拟合
模型拟合

 

r方主要是表示模拟方程中自变量对因变量的解释能力,其取值范围为0-1,理想情况来说,r方当然是越接近于1越好,部分研究问题会要求r方至少要达到0.6。

对于一些多自变量的研究问题,r方的数值可能会很高,但方程拟合效果不一定好,因此还需结合研究问题的实际情况决定,但总体原则是越接近1越好,最好大于0.6。

对于多自变量的问题,spss的回归分析会同时提供调整后r方的结果,该结果可以更加准确地反映模型的拟合程度,因其修正了多自变量对r方数值的影响,当模型自变量比较多时,更建议查看调整后r方的结果,其取值也是0-1,也是越接近1拟合效果越好。

系统聚类分析
系统聚类分析

 

三、spss曲线回归是什么

spss回归分析除了提供常用的线性回归功能外,还提供了实用性更强的曲线回归功能。

曲线回归在自变量与因变量(定量变量)的关系模型未知的情况下,可设置多种模型检验分析,比如线性、二次、三次、增长、指数模型等。通过对比不同回归方程的r方与显著性检验数值,可判断哪一种模型更适用,相比于逐个回归方程分析运算,曲线回归能提供更便捷的分析方式。

曲线回归
曲线回归

 

spss的曲线回归运算结果如图5所示,包含r方、F值、显著性P值以及回归方程的参数估算值。

通过对比r方可得到“三次回归方程”的r方最高,达到0.956,其他线性、二次、增长、指数等回归方程也有0.9以上的r方。

根据显著性P值<0.001,说明以上回归方程在95%的置信水平下都拥有显著性,即自变量对因变量有显著影响,结合r方的数值,可选用三次回归方程,其数学表达式可根据参数估算值撰写如下:y=8.495-2.725x1+1.688x2-0.071x3

参数估算值
参数估算值

 

四、小结

以上就是关于spss回归分析是干嘛的,spss回归分析r方为多少合适的相关内容。spss回归分析提供的分析方法丰富,应用广泛,是一种很常用的变量关系分析方法,对于定量变量关系未知的情况,可尝试曲线回归,以更加便捷的分析方式进行多种回归方程的模拟运算。

 

作者:泽洋

展开阅读全文

标签:一元线性回归分析回归分析二元回归分析有序回归分析SPSS回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS如何计算变量的回归系数 SPSS回归分析中如何加入控制变量
在回归分析的领域中,回归系数通常占据着重要的地位,回归系数的存在相当于让整个回归方程有了方向之分。在回归方程中表示了自变量对因变量影响程度大小的参数,回归系数的大小与自变量和因变量的变化密切相关。当我们需要计算变量的回归系数时,使用SPSS不仅可以计算变量的回归系数,还可以在回归分析中设置控制变量。接下来给大家介绍SPSS如何计算变量的回归系数,SPSS回归分析中如何加入控制变量的具体内容。
2025-12-17
SPSS怎么处理缺失值 SPSS缺失数据过多如何填补
在临床收集数据时,由于每个患者做的指标不同,影像学检查也存在差异,所以经常会遇到数据缺失的情况。SPSS作为一款专业的数据分析软件,它可以帮助我们分析出哪些指标有缺失值和大概占比多少,以及针对这些缺失数据,利用不同的方法进行填补。今天我们一起来探讨SPSS怎么处理缺失值,SPSS缺失数据过多如何填补的问题。
2025-12-17
SPSS拆分文件怎么操作 SPSS拆分文件后怎么分析
拆分文件是数据分析中一项不可缺少的操作。例如在一组数据变量中含有多个变量需要分析的时候,可以把这些分组变量拆分开来,进而分开进行处理,提高处理的效率。这里推荐大家使用SPSS来进行数据分析,它在满足日常数据处理任务的同时,兼顾输出数据分析报告,方便我们使用它进行科研报告、问卷调查等数据分析。接下来给大家介绍SPSS拆分文件怎么操作,SPSS拆分文件后怎么分析的具体内容。
2025-12-17
SPSS可以做结构方程模型吗 SPSS可以做验证性因子分析吗
在调查服务满意度、人口数据影响特征和学生幸福感等等涉及一些无法直接测量的概念时,就会进入结构方程模型的应用领域。结构方程模型,是一种适用于多变量的统计分析方法,简称SEM,它是一种用于分析“观察变量与潜变量”和“潜变量”之间关系结构的方法。验证性因子分析,简称为“CFA”,是一种验证结构效度分析方法,常在结构方程模型分析中使用,作用是验证观测变量与潜在变量之间的结构关系。接下来就围绕着“SPSS可以做结构方程模型吗,SPSS可以做验证性因子分析吗”这两个问题,给大家介绍一下在SPSS中如何做结构方程模型分析。
2025-12-17
SPSS怎么生成分组柱状图 SPSS柱状图标签显示不全怎么调整
图表可以用简单直观的方式揭示数据的变化情况,帮助我们认识和预测事物变化的方式。如何绘制合适的图表是我们融入社会的一项重要的技能,在包括但不限于科学研究、行政管理和商业统计等社会生活诸多领域充满了各式图表,SPSS便以其丰富多样的图表类型和便捷的操作方式被广泛使用。本文中我就给大家介绍一下关于SPSS怎么生成分组柱状图,SPSS柱状图标签显示不全怎么调整的相关内容。
2025-12-17
SPSS如何把连续变量变成二分类 SPSS将连续变量重新编码为分类变量的方法
我们在使用SPSS进行数据分析时,都会导入大量的原始文件,只有原始文件的基数足够大,我们才能获得较为客观的分析结果。但是众多原始数据中,总会出现一些连续变量,它们会在一定程度上降低数据的参考价值。针对这种情况,我们就需要考虑如何将这些连续变量转换为对我们有利的分类变量。今天我就以SPSS如何把连续变量变成二分类,SPSS将连续变量重新编码为分类变量的方法这两个问题为例,来向大家讲解一下连续变量的转化技巧。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: