SPSS > 使用技巧 > 多元线性回归需要做哪些检验 多元线性回归分析步骤

多元线性回归需要做哪些检验 多元线性回归分析步骤

发布时间:2022-06-08 12: 45: 01

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics试用版

部分用户可能电脑型号不一样,但系统版本一致都适合该方法。

多元线性回归是较为简单的回归分析,用以评价因变量与多个自变量之间是否存在简单线性关系,人工进行多元线性回归分析计算非常繁琐,借助统计分析软件则可以显著提高效率,如IBM SPSS Statistics,使用SPSS进行多元线性回归需要做哪些检验,多元线性回归分析步骤是怎样的,本文将向大家作简单介绍。

一、多元线性回归需要做哪些检验

进行多元线性回归分析,首先要求因变量是连续变量,且自变量之间相互独立,不相互影响。

然后需要对自变量进行正态分布检验,异常数据检验和多重共线性检验,由于本文采用了随机生成的数据,符合正态分布,所以这里省略正态分布检验,感兴趣的读者可以登录SPSS中文网站:查找学习。

首先录入数据如图1所示。

 

图1 录入数据
图1 录入数据

 

 

然后点击图形,旧对话框,箱图。

 

图2 进行异常数据检验
图2 进行异常数据检验

 

 

选择简单箱图,然后勾选单独变量的摘要,点击定义,进行箱图绘制,然后在弹出的对话框中将VAR00001,VAR00002,VAR00003指定为箱表示变量,点击确定。

 

图3 定义箱表示
图3 定义箱表示

 

 

箱图如图4所示,如果有异常数据,箱图会进行标记提示,本文数据没有异常数据。

 

图4 箱图
图4 箱图

 

 

接下来我们进行共线性检测,如果自变量之间本身为线性关系,那么进行多元线性回归就没有意义,我们点击分析,回归,线性,进入回归分析功能,如图5所示。

 

图5 回归分析
图5 回归分析

 

 

我们指定因变量为VAR00004,自变量为VAR00001,VAR00002,VAR00003。

 

图6 指定变量
图6 指定变量

 

 

然后点击统计,在弹出的窗口选择,共线性诊断。关于共线性诊断结果我们将在第三小节中介绍。

 

图7 共线性诊断
图7 共线性诊断

 

 

二、多元线性回归分析步骤

我们继续第一小节步骤,进行多元线性回归分析,选定共线性诊断以后,我们回到图8所示界面,点击图,将DEPENDNT加入Y轴,将*ADJPRED加入X轴,勾选直方图,正态概率图,点击继续。

 

图8 绘图设置
图8 绘图设置

 

回到图9所示主界面,点击确定,SPSS将进行多元线性回归分析,输出结果,并绘制图像,辅助展示回归结果,关于结果解释我们在第三小节中介绍。

图9 进行多元线性回归分析
图9 进行多元线性回归分析

 

 

图10是回归后,残差的预计概率和实测概率图,实测值越贴近直线,线性程度越高。

图10 残差概率图
图10 残差概率图

 

三、多元线性回归分析结果解读

结合图11,我们首先观察到SPSS将全部变量输入,没有剔除变量,然后我们观察模型摘要,一般以R反应线性相关程度,R越接近1,线性相关程度就越高,我们以调整后R方表示自变量对因变量的解释程度,即通过多元线性回归分析自变量可以影响因变量的99.7%。

然后我们分析ANOVA显著性,如果此值小于0.05,则证明线性回归分析不具有统计学意义,如果此值大于0.05,说明线性回归分析具有统计学意义。

 

图11 回归结果1
图11 回归结果1

 

 

然后我们查看图12回归结果2,线性回归方程为:4.946*VAR00001+4.172*VAR00002+3.074*VAR00003-8.455。共线性统计VIF均小于10,提示多元共线性检验通过。多元线性回归分析有效。

 

  图12 回归结果2
图12 回归结果2

 

多元线性回归需要做哪些检验?包括数据是否呈正态分布,数据是否存在异常值,以及多元共线性检验;完成上述检验后,多元线性回归步骤比较简单,正确地分析结果,给出结论即可。

 

作者:莱阳黎曼

展开阅读全文

标签:多元方差分析回归分析非线性回归多元线性多元线性回归分析SPSSSPSS多元非线性回归多元线性回归分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS怎么进行描述性统计分析 SPSS均值标准差计算步骤
在统计学当中,描述性分析主要用来对调查样本总体的数据进行相关描述性质的研究(比如用图形的方式描述分析)。而在进行描述性分析的时候,我经常会用到SPSS数据分析软件,这款软件给我提供了许多数据分析的帮助。接下来给大家介绍SPSS怎么进行描述性统计分析,SPSS均值标准差计算步骤的具体内容。
2026-01-08
SPSS怎么做回归分析 SPSS回归结果不显著怎么办
在数据分析的领域中,回归分析相当于为数据样本开启了一道未来大门,它可以帮助我们评估和判断数据样本未来的走势和发展方向,同时帮助我们判断不同数据变量之间的关系。如果遇到回归结果不显著的情况,我们也需要对这部分数据进行处理,避免出现无效的分析情况。下面以SPSS为例,给大家介绍SPSS怎么做回归分析, SPSS回归结果不显著怎么办的具体内容。
2026-01-08
SPSS如何做方差分析 SPSS方差分析结果显著性该怎么解释
在数据分析这个领域当中,许多小伙伴经常会遇到进行方差分析的操作。方差分析在数据统计中是一个常见的数据处理方式,主要用来检验数据样本的离散分布和稳定性情况。SPSS既能够帮助我们进行专业的方差分析,还可以得到数据的分析报告。接下来以SPSS为例,向大家介绍SPSS如何做方差分析,SPSS方差分析结果显著性该怎么解释的具体内容。
2026-01-08
SPSS偏度和峰度的分析步骤 SPSS偏度和峰度的分析结果解读
偏度和峰度是我们在进行数据分析的过程中,判断数据是否符合正态分布的重要标准之一,通过这两个数值可以很清晰地看出数据的整体走势和集中状态。因此这两项数值也经常被用于市场学分析、股市分析中,能够帮忙用户去发现某些潜在的规律。今天我就以SPSS偏度和峰度的分析步骤,SPSS偏度和峰度的分析结果解读这两个问题为例,来向大家讲解一下关于偏度和峰度的相关知识。
2026-01-08
SPSS如何计算ROC曲线截断值 SPSS如何计算变异系数
SPSS是一款应用较为广泛的数据统计分析软件,无论是社会研究领域,还是教育、科学研究领域都有其身影,而SPSS之所以这么受欢迎也是有其原因的,SPSS不仅仅可以服务于统计行业的小白,其内部的语法还可以服务于资深的统计分析人员,满足各种统计分析需求,接下来给大家介绍的是有关SPSS如何计算ROC曲线截断值,SPSS如何计算变异系数的相关内容。
2026-01-08

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: