IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图

如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图

发布时间:2021-01-06 11: 35: 34

在使用IBM SPSS Statistics参数检验中的T检验时,一般情况下,都需先验证数据是否服从正态分布。如果服从正态分布的话,就可以执行T检验;反之,则需要使用非参数检验的方法。

那么,该如何使用SPSS检验数据是否服从正态分布呢?我们可以使用非参数检验中的KS检验、图表中的Q-Q图、描述统计中的偏度峰度系数、探索统计的正态验证来进行数据的正态分布检验。本文会先重点介绍KS检验与Q-Q图

一、KS检验

KS检验,是Kolmogorov-Smirnov检验的简称,中文译为柯尔莫哥洛夫-斯米尔诺夫检验,是一种检验拟合优度的检验方法,可用于检验数据是否服从理论分布,比如是否服从正态分布。

接下来,我们使用一组初中生的身高数据来作为示例数据。

图1:示例数据

然后,如图2所示,在SPSS的非参数检验菜单中,打开单样本KS检验功能。

图2:KS检验功能

如图3所示,在KS检验设置面板中,重点是要进行检验变量与检验分布的设置。本例需要检验的是身高样本数据是否服从正态分布,因此,需要将身高变量添加到检验变量,并勾选检验分布中的“正态”选项。

在正态检验选项中,一般情况下,选择默认的“使用样本数据”即可。

图3:KS检验设置

然后,再打开选项面板,勾选所需的统计数值(建议勾选描述)与缺失值的处理方式。

图4:选项设置

完成检验设置后,运行检验。

如图5所示,在KS检验结果中,可以看到,当前检验的分布是正态分布,而其渐进显著性数值为0.00<0.05,因此拒绝原假设,也就是说,示例身高样本数据不符合正态分布。

图5:KS检验结果

二、Q-Q图

Q-Q图,是Quantile-Quantile图的简称,通过计算两个数据的分位数来绘制散点图,从而检验数据是否服从理论分布。

正态Q-Q图,即实测值与预期的正态值组成的散点图。如果数据服从正态分布的话,数值在Q-Q图的分布会呈现直线型;反之则不服从正态分布。

Q-Q图属于SPSS描述统计中的一种,如图6所示,依次单击分析-描述统计-Q-Q图。

图6:Q-Q图功能

如图7所示,基于本文的数据验证目的—验证身高样本数据是否服从正态分布,需将身高变量添加到变量选项,并在检验分布中选取“正态”选项。其他选项,一般情况下,保持默认即可。

图7:Q-Q图设置

完成以上设置后,运行检验。

从图8的身高正态Q-Q图看到,散点图上的数值似乎接近与直线很接近。但由于身高的差别数值较小,我们还需要具体看看数值与直线的偏离大小。

图8:身高正态Q-Q图

从图8的去趋势正态Q-Q图看到,实际上,实测值与正态的偏差还是比较大的,因此,不能确切说明身高样本数据服从正态分布。

图9:去趋势正态Q-Q图

三、小结

综上所示,通过正态Q-Q图,我们可以直观地观察到数据的正态分布情况,但当数值与直线有一定偏离的情况下,还需要借助去趋势正态Q-Q图,以及KS检验来进一步检验数据的正态性。

除了KS图与Q-Q图外,SPSS的描述统计、探索统计也可以帮助我们进行正态检验,如需获取该部分内容,可前往IBM SPSS Statistics中文网站。

作者:泽洋

展开阅读全文

标签:SPSST检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: