IBM SPSS Statistics 中文网站 > 使用技巧 > 如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图

如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图

发布时间:2021/01/06 11:36:15

在使用IBM SPSS Statistics参数检验中的T检验时,一般情况下,都需先验证数据是否服从正态分布。如果服从正态分布的话,就可以执行T检验;反之,则需要使用非参数检验的方法。

那么,该如何使用SPSS检验数据是否服从正态分布呢?我们可以使用非参数检验中的KS检验、图表中的Q-Q图、描述统计中的偏度峰度系数、探索统计的正态验证来进行数据的正态分布检验。本文会先重点介绍KS检验与Q-Q图

一、KS检验

KS检验,是Kolmogorov-Smirnov检验的简称,中文译为柯尔莫哥洛夫-斯米尔诺夫检验,是一种检验拟合优度的检验方法,可用于检验数据是否服从理论分布,比如是否服从正态分布。

接下来,我们使用一组初中生的身高数据来作为示例数据。

图1:示例数据

然后,如图2所示,在SPSS的非参数检验菜单中,打开单样本KS检验功能。

图2:KS检验功能

如图3所示,在KS检验设置面板中,重点是要进行检验变量与检验分布的设置。本例需要检验的是身高样本数据是否服从正态分布,因此,需要将身高变量添加到检验变量,并勾选检验分布中的“正态”选项。

在正态检验选项中,一般情况下,选择默认的“使用样本数据”即可。

图3:KS检验设置

然后,再打开选项面板,勾选所需的统计数值(建议勾选描述)与缺失值的处理方式。

图4:选项设置

完成检验设置后,运行检验。

如图5所示,在KS检验结果中,可以看到,当前检验的分布是正态分布,而其渐进显著性数值为0.00<0.05,因此拒绝原假设,也就是说,示例身高样本数据不符合正态分布。

图5:KS检验结果

二、Q-Q图

Q-Q图,是Quantile-Quantile图的简称,通过计算两个数据的分位数来绘制散点图,从而检验数据是否服从理论分布。

正态Q-Q图,即实测值与预期的正态值组成的散点图。如果数据服从正态分布的话,数值在Q-Q图的分布会呈现直线型;反之则不服从正态分布。

Q-Q图属于SPSS描述统计中的一种,如图6所示,依次单击分析-描述统计-Q-Q图。

图6:Q-Q图功能

如图7所示,基于本文的数据验证目的—验证身高样本数据是否服从正态分布,需将身高变量添加到变量选项,并在检验分布中选取“正态”选项。其他选项,一般情况下,保持默认即可。

图7:Q-Q图设置

完成以上设置后,运行检验。

从图8的身高正态Q-Q图看到,散点图上的数值似乎接近与直线很接近。但由于身高的差别数值较小,我们还需要具体看看数值与直线的偏离大小。

图8:身高正态Q-Q图

从图8的去趋势正态Q-Q图看到,实际上,实测值与正态的偏差还是比较大的,因此,不能确切说明身高样本数据服从正态分布。

图9:去趋势正态Q-Q图

三、小结

综上所示,通过正态Q-Q图,我们可以直观地观察到数据的正态分布情况,但当数值与直线有一定偏离的情况下,还需要借助去趋势正态Q-Q图,以及KS检验来进一步检验数据的正态性。

除了KS图与Q-Q图外,SPSS的描述统计、探索统计也可以帮助我们进行正态检验,如需获取该部分内容,可前往IBM SPSS Statistics中文网站。

作者:泽洋

标签:T检验SPSS
SPSS Statistics
云版首发!优惠来袭!
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
最新文章
SPSS字符串如何画直方图 SPSS字符串如何改为数值
在使用SPSS进行数据统计分析过程中,为了更直观的看到统计数据的分布情况以及各个变量之间的关系,大家比较喜欢使用图表分析法进行分析,其中直方图就是使用广泛的图表分析方法,那么SPSS字符串如何画直方图,以及SPSS字符串如何改为数值,让我为大家详细讲解说明。
2023-03-21
SPSS缺失值怎么输入 SPSS缺失值怎么自动填充
有时候导入SPSS中的数据资料,会因为人为原因或者设备原因出现缺失数据,遇到这种情况如果是一些调研数据资料,想再重新进行调研收集数据资料,显然是不可能的,所以需要对缺失的数据进行处理。本文就和大家详细介绍一下,SPSS缺失值怎么输入,以及SPSS缺失值怎么自动填充。
2023-03-20
IBM SPSS Statistics可以免费安装么 IBM SPSS Statistics可以卸载吗
IBM SPSS Statistics是一款强大的数据统计分析软件,能够帮助用户更好的分析数据资料,解决复杂的业务和研究问题。帮助用户更好的完成统计工作,下面本文就和大家详细讲解,IBM SPSS Statistics可以免费安装么,IBM SPSS Statistics可以卸载吗。
2023-02-14
SPSS因子分析步骤 SPSS因子分析案例
在一些数据资料中,变量与变量之间没有明显关联关系,为了对这些变量进行有效的综合评价,需要在这些变量中找出共同因素,比较适合的数据分析方法是因子分析,下面本文就和大家详细介绍,SPSS因子分析步骤,以及 SPSS因子分析案例。
2023-02-14
SPSS字符串变量怎么分析 SPSS字符串变量为什么不能作为因子
SPSS是一款非常专业的数据统计软件,包含有描述统计分析、回归分析、相关性分析等多种数据分析方法,能够帮助使用者解决很多数据统计分析方面的问题,下面本文就和大家详细讲解,SPSS字符串变量怎么分析,SPSS字符串变量为什么不能作为因子。
2023-02-14
SPSS数据分析后怎么得到图表 SPSS数据分析后的结果怎么看
在SPSS数据统计软件中,用户是可以根据需求对数据统计分析结果的格式进行设置,可以是表格文件,也可以是图表格式,一般用户为了方便查看数据统计分析结果,会选择图表格式,接下来就和大家具体讲解,SPSS数据分析后怎么得到图表,SPSS数据分析后的结果怎么看。
2023-02-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容:

咨询热线

在线咨询

限时折扣