SPSS > 使用技巧 > 如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图

如何使用SPSS检验数据是否服从正态分布—KS检验与Q-Q图

发布时间:2021-01-06 11: 35: 34

在使用IBM SPSS Statistics参数检验中的T检验时,一般情况下,都需先验证数据是否服从正态分布。如果服从正态分布的话,就可以执行T检验;反之,则需要使用非参数检验的方法。

那么,该如何使用SPSS检验数据是否服从正态分布呢?我们可以使用非参数检验中的KS检验、图表中的Q-Q图、描述统计中的偏度峰度系数、探索统计的正态验证来进行数据的正态分布检验。本文会先重点介绍KS检验与Q-Q图

一、KS检验

KS检验,是Kolmogorov-Smirnov检验的简称,中文译为柯尔莫哥洛夫-斯米尔诺夫检验,是一种检验拟合优度的检验方法,可用于检验数据是否服从理论分布,比如是否服从正态分布。

接下来,我们使用一组初中生的身高数据来作为示例数据。

图1:示例数据

然后,如图2所示,在SPSS的非参数检验菜单中,打开单样本KS检验功能。

图2:KS检验功能

如图3所示,在KS检验设置面板中,重点是要进行检验变量与检验分布的设置。本例需要检验的是身高样本数据是否服从正态分布,因此,需要将身高变量添加到检验变量,并勾选检验分布中的“正态”选项。

在正态检验选项中,一般情况下,选择默认的“使用样本数据”即可。

图3:KS检验设置

然后,再打开选项面板,勾选所需的统计数值(建议勾选描述)与缺失值的处理方式。

图4:选项设置

完成检验设置后,运行检验。

如图5所示,在KS检验结果中,可以看到,当前检验的分布是正态分布,而其渐进显著性数值为0.00<0.05,因此拒绝原假设,也就是说,示例身高样本数据不符合正态分布。

图5:KS检验结果

二、Q-Q图

Q-Q图,是Quantile-Quantile图的简称,通过计算两个数据的分位数来绘制散点图,从而检验数据是否服从理论分布。

正态Q-Q图,即实测值与预期的正态值组成的散点图。如果数据服从正态分布的话,数值在Q-Q图的分布会呈现直线型;反之则不服从正态分布。

Q-Q图属于SPSS描述统计中的一种,如图6所示,依次单击分析-描述统计-Q-Q图。

图6:Q-Q图功能

如图7所示,基于本文的数据验证目的—验证身高样本数据是否服从正态分布,需将身高变量添加到变量选项,并在检验分布中选取“正态”选项。其他选项,一般情况下,保持默认即可。

图7:Q-Q图设置

完成以上设置后,运行检验。

从图8的身高正态Q-Q图看到,散点图上的数值似乎接近与直线很接近。但由于身高的差别数值较小,我们还需要具体看看数值与直线的偏离大小。

图8:身高正态Q-Q图

从图8的去趋势正态Q-Q图看到,实际上,实测值与正态的偏差还是比较大的,因此,不能确切说明身高样本数据服从正态分布。

图9:去趋势正态Q-Q图

三、小结

综上所示,通过正态Q-Q图,我们可以直观地观察到数据的正态分布情况,但当数值与直线有一定偏离的情况下,还需要借助去趋势正态Q-Q图,以及KS检验来进一步检验数据的正态性。

除了KS图与Q-Q图外,SPSS的描述统计、探索统计也可以帮助我们进行正态检验,如需获取该部分内容,可前往IBM SPSS Statistics中文网站。

作者:泽洋

展开阅读全文

标签:SPSST检验

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS生存分析怎么输入删失的数据 SPSS生存分析步骤
对于经常与数据分析打交道的用户来说,一款好用的数据分析软件既可以提高我们的数据分析效率,还可以快速将分析完成的数据进行导出,便于对数据后续的开发和利用。这里给大家介绍一款我自己常用的数据分析软件—SPSS,同时带来SPSS生存分析怎么输入删失的数据,SPSS生存分析步骤的具体内容。
2024-11-20
SPSS生成变量功能在哪里 SPSS生成变量功能怎么用
在SPSS导入数据后,由于各种原因可能需要在原数据表上添加新变量。这些新变量可能是全新的,也可能是通过原有变量计算而得。虽然可以重新导入数据,但如果能在原数据表基础上添加会更方便。SPSS的生成变量功能可满足以上需求,那么,SPSS生成变量功能在哪里,SPSS生成变量功能怎么用?接下来,让我们详细来学习下相关的内容。
2024-11-19
SPSS数据变换是什么意思 SPSS数据变换方法
SPSS是一款功能强大的统计分析软件,支持数据处理、数据分析和数据可视化等多种操作,被广泛应用于各类研究和数据统计。很多用户在使用SPSS时,可能会遇到不知道什么是数据变换和如何进行数据变换等问题。本文将为大家介绍关于SPSS数据变换是什么意思,SPSS数据变换方法的相关内容。
2024-11-19
论文SPSS标准差大于1合理吗 SPSS怎么计算平均值
在进行论文写作中,通常需要用到平均值、样本差等指标。平均值就是所收集到的样本均值,代表了样本的集中程度。而标准差则是反映所收集到的样本距离其平均值,也就是距离集中位置的距离。下面我给大家介绍一下论文SPSS标准差大于1合理吗,SPSS怎么计算平均值的相关内容。
2024-11-18
SPSS计算标准偏差公式怎么算 SPSS标准误差怎么看
标准偏差,也称为SD,是一种统计学上常用的分析指标,用于衡量一组数值的变异性或离散程度。与标准偏差紧密相关的另一个概念是标准误差,简称SE。标准误差是用来计算收集到的样本均值的变异性的统计指标。本文会指导大家SPSS计算标准偏差公式怎么算,SPSS标准误差怎么看。希望用户对数据的离散程度和样本统计量的可靠性有一个清晰的认识。
2024-11-18
虚拟变量转换是什么意思 SPSS如何设置虚拟变量操作步骤
虚拟变量转换是什么意思?虚拟变量转换指的是将分类变量创建为虚拟变量的过程。为了满足后续统计运算的需求,很多时候要将分类变量转换为数字型的变量,而虚拟变量转换就能满足这一操作需求。本文会给大家演示SPSS如何设置虚拟变量操作步骤,帮助大家更好地理解相关概念。
2024-11-16

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: