IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS中如何进行皮尔逊相关性分析

SPSS中如何进行皮尔逊相关性分析

发布时间:2021-05-12 11: 27: 45

现在假设有一份问卷报告,里面调查了用户对于某一商品质量的满意程度、售后的满意程度、回购的意愿这三项,那么要你去分析出这三项数据的相关性。这三者相或不相关是一个定性问题,那我们如何用数学的数据分析的方法来解决呢。在IBM SPSS Statistics中我们可以使用皮尔逊检测法来做相关性分析

皮尔逊相关性分析要求变量类型为连续数值型变量,在问卷研究中,数据一般被视为连续数值型变量。因此,皮尔逊相关性分析是量表分析中最常用的统计学方法 。 接下来我将用几个步骤,在IBM SPSS Statistics中演示如何进行皮尔逊相关性分析。

1、数据展示

如图所示,图中有15组调查结果,图中的数字1~5代表满意程度,数字越大代表满意程度越高。

1479dfd04603d72f552aee21d18b806
图1:数据展示

2、菜单位置

首先点击菜单中的“分析”按钮,然后点击下级菜单的“相关”按钮,最后点击“双变量”按钮。

bed3ca97c52f5c9f5d524a362a24568
图2:菜单位置

3、编辑双变量相关性界面

如图所示,我们将满意程度、回购意愿、质量满意这三个变量加入到变量框中。

3211d74bdaa29f4a428796d307f745d
图3:选择分析变量

点击“选项”按钮,然后勾选下图界面中的平均值和标准差、叉积偏差和协方差。

85263e34e844f56030afa504c794756
图4:勾选分析项

如图所示,将置信区间设置为95%。

b86f301148f580dfe94809e0bc0c41f
图5:编辑置信区间

4、结果展示

怎样看懂结果是最重要的,我们以图中标注出来的两个数据为例。如图所示其中显著性为0.01,根据皮尔逊检测的规定显著性小于0.05说明具有相关性,那么就代表满意程度和回购意愿具有相关性。再看相关性的数值是0.871,根据规定只要相关性大于0就是正相关,也就是随着满意程度的增加回购意愿也会增加。其他的数据也可以上述步骤逐一查看。

fa9117a46a6c540df14a1222f912858
图6:结果展示

皮尔逊相关性分析在问卷调查中的运用十分广泛,我们在日常办公和论文撰写的时候经常会用到问卷调查。掌握好本文的内容,需要注意以下几点,首先需要选择合适的变量进行皮尔逊相关性分析,然后需要注意变量要为连续的数值型变量不能是字符串,最后要弄懂显著性值在什么范围内变量具有相关性。关于相关性分析IBM SPSS Statistics中文官网还有很多文章,大家可以自行去查看。

作者:何必当真

展开阅读全文

标签:IBM SPSS Statistics相关性分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: