IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS的相关性分析案例

SPSS的相关性分析案例

发布时间:2021-04-13 17: 49: 26

相关性分析是研究数据之间是否具有相关性和关联度强弱的一种方法,是数据分析中较为常用的一类手段。IBM SPSS Statistics为用户提供了全面的相关性分析功能,这里将为大家介绍一下如何进行双变量的SPSS相关性分析

一、数据

1
图1:数据样本

这是一份汽车价格、马力和燃料效率之间的数据表,要探究的问题是价格和马力之间是否具有相关性。

在进行相关性分析之前,我们可以通过一些简单的方法来大概判断变量之间的相关关系,比如在本案例中,进行数据的升序排列后观察,我们猜测价格和马力总体上可能具有正相关关系。

2
图2:升序排列后的数据

也可以通过一些统计图形来判断变量之间的走向。

二、相关性分析

那么如何使用SPSS进行具体的相关性分析呢?

1.功能位置

3
图3:双变量分析

点击“分析”——“相关”——“双变量”,可以打开双变量相关性分析的窗口。

2.设置

4
图4:变量设置

将“价格”和“马力”变量移入右侧的变量框中,这表示SPSS将对这两个变量展开相关性分析。

3.相关系数

相关系数是描述变量相关性的参数,相关系数的绝对值越大,相关性越大,系数大于0是正相关,小于0是负相关。

5
图5:相关系数

SPSS为用户提供了三种相关系数,皮尔逊系数用来度量线性相关关系的关联度,适用于满足正态分布的数据;肯德尔系数属于非参数统计,主要考虑秩相同点的影响;斯皮尔曼系数是根据数据的秩来计算的,适用于有序数据和不满足正态分布的数据。

在不确定分析数据关系之前,可以将三个系数都选中。

4.显著性检验

6
图6:显著性检验

在开始检验之前,我们已经简单判断过数据的相关方向,此时就可以选择“单尾检验”,如果不确定是正相关还是负相关,可以选择“双尾检验”。

勾选“标记显著性相关”,统计结果中达到显著性水平的数据会被标记。

5.选项

7
图7:选项设置

在“选项”对话框中勾选待统计的参数和个案排除方法,我们这里参数全部勾选,个案选择按对排除。

6.分析结果

8
图8:结果输出

在工作日志中查看分析结果,可以发现相关系数是很大的,标明价格和马力之间存在非常显著的正相关性。

三、小结

本文中我们介绍了使用IBM SPSS Statistics对一份样本数据进行相关性分析的方法,双变量相关分析是这类方法中的一种,除此以外还有很多其他的方法,如果您对IBM SPSS Statistics感兴趣,欢迎进入IBM SPSS Statistics中文网站下载试用。

作者:参商

展开阅读全文

标签:IBM SPSS Statistics数据分析软件

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: