发布时间:2021-04-14 16: 27: 52
回归分析是处理数据、分析数据特征和关系的一种重要方法,在各个领域的数理统计分析中都非常有用。回归分析中有多种分析方法,接下来我们要介绍的是IBM SPSS Statistics中的曲线估算分析方法。
一、曲线估算
和线性回归的原理类似,曲线估算也是以最小二乘法为基础,来分析曲线关系资料在数量变化上的特征和规律的一种回归分析方法。
在“分析”菜单中找到“回归”,点击其中的“曲线估算”,可以打开曲线估算的分析窗口。
二、操作方法
1.数据样本
这是一份从1978年到2005年某地区人均收入和部分支出情况的统计表,使用曲线估计可以分析年人均可支配收入和教育支出的基本关系。
2.变量设置
曲线估计中需要设置三个变量:因变量、自变量和标签变量,我们要探究教育支出随人均可支配收入变化的关系,所以将教育支出移入到因变量窗口内。
自变量的选择要分为两类:时间变量和数字变量,时间变量是一个特例,如果自变量是以时间为刻度变化的,就需要点击选择“独立”中的“时间”,SPSS会自动生成一个时间变量以进行曲线估计。
我们这里使用数字变量即可,点击“变量”,将“人均可支配收入”移入该窗口。
个案标签是用来标记观测距离的变量,将年份移入框内。
3.模型设置
我们需要选择一个或多个模型以便于SPSS开始分析,每个模型都是自变量和因变量之间的变化关系,这里选择的是线性、二次、复合和三次。
勾选“在方程中包括常量”、“模型绘图”和“显示ANOVA”表。
4.保存设置
这个对话框内可以设置保存的变量类型,包括预测值、残差和预测区间,如果是时间变量,将会激活右侧的预测个案窗口,这里我们不做设置。
5.分析结果
在输出日志窗口中,可以看到每个回归模型的分析结果,根据模型的显著性系数小于0.05则该模型显著,可以判断线性、立方和复合模型都是可信的,且三次模型最可信。
在分析结果最后,有一个完整的散点图来表示因变量和自变量之间的回归关系,比较观测值和回归曲线、不同的回归曲线,可以分析得出该样本的最佳回归模型是三次模型。
三、小结
本文中我们主要介绍了曲线估计以及如何进行简单的SPSS曲线估算分析,这个方法适用于绝大多数的连续型的数字变量,希望可以对大家有所帮助!
如果您对IBM SPSS Statistics有更多兴趣,欢迎进入IBM SPSS Statistics中文网站下载试用。
作者:参商
展开阅读全文
︾
微信公众号
读者也喜欢这些内容:
SPSS箱形图原理 SPSS箱形图如何显示均值线和数值
SPSS箱形图原理,箱形图是以极小值、25%分位数、中位数、75%分位数、极大值来展示数据离散情况的图形。SPSS箱形图如何显示均值线和数值,SPSS箱形图本身无均值线,可通过添加参考线的方法,添加均值线与数值。...
阅读全文 >
回归分析SPSS步骤 回归分析SPSS结果解读
回归分析SPSS步骤,本文会以研究客流量对销售额影响的问题为例具体演示SPSS操作步骤,同时,也会具体进行回归分析SPSS结果解读,并进一步讲解回归分析的其他类型,以帮助加深对回归分析的认识。...
阅读全文 >
线性回归分析的基本步骤 SPSS线性回归分析方程怎么写
线性回归分析的基本步骤,包括设定回归方程的变量,检验方程是否满足线性回归假设,检验方程的拟合优度,显著性,创建方程等步骤。SPSS线性回归分析方程怎么写?本文会通过实例讲解SPSS线性回归分析方程的撰写方法。...
阅读全文 >
SPSS参数估计值是什么意思 SPSS参数估计步骤
SPSS参数估计值是什么意思?SPSS参数估计量是使用样本数据通过参数估计方法计算出来的统计量的值。本文会运用实例详细SPSS参数估计步骤并对SPSS的运算结果进行解读,并根据估计量建立回归方程。...
阅读全文 >