SPSS > 使用技巧 > IBM SPSS Statistics利用因子分析进行成分提取

IBM SPSS Statistics利用因子分析进行成分提取

发布时间:2021-07-15 11: 14: 47

当我们的研究数据集指标过多,不利于我们进行后期的分析和研究时,我们就可以通过因子分析法,对指标成分进行提取,进而减少总体的指标数目,同时也能去除一些相关性较小的指标,提高算法的分析准确率。

IBM SPSS Statistic软件提供了因子分析工具,帮助我们进行成分提取,下面我们来看看如何实现。

一、操作步骤

我们准备了Q1到Q25这25个研究指标,其中指标都是有序的分类变量,符合因子分析的前提条件。首先我们在分析菜单中,选择降维中的因子工具,如图1。

图1:因子分析工具
图1:因子分析工具

我们将25个研究指标全部放入到右侧的“变量”栏中,然后点击“描述”按钮。

图2:放入变量栏
图2:放入变量栏

“描述”界面中,勾选上“初始解”、相关性矩阵中的“系数”、“再生”、“反映像”和“KMO和巴特利特球形度检验”。

图3:描述界面
图3:描述界面

回到上个界面中点击“提取”,在提取界面中方法选择“主成分”,分析选用相关性矩阵。

另外,下方的提取项中,我们要根据自身的需求进行选择,如果选择基于特征值大于1进行成分提取,那么如果没有特征值大于1的成分,SPSS将不会为我们进行提取;如果选择固定数目提取因子,那么无论因子特征值多少,SPSS都会为我们提取前几个固定的因子。

图4:提取界面
图4:提取界面

之后点击“得分”选项,在得分界面中,勾选“保存为变量”,方法选用“回归”方法,这样会将我们提取的特征成分保存为新的变量,便于后期的统计分析。

图5:保存为变量
图5:保存为变量

二、结果说明

通过上述的设置,SPSS为我们生成了7个结果表格,我们看其中的“KMO和巴特利特检验”表格的KMO检验系数值,可以看到值为0.828。一般认为,该系数大于0.8时,因子分析提取的结果才有较好的实用性。

图6:KMO和巴特利特检验
图6:KMO和巴特利特检验

再看“总方差解释”表格,我们可以看到得分大于1的有五个成分,由于上方我们选择特征值大于1的成分因子进行提取,因此在本次演示案例中,SPSS将为我们从25个指标中提取出5个主要的成分。

图7:总方差解释

下图8红框标出的指标即为SPSS为我们提取的成分指标。

图8:新成分指标

在本文中,我们利用了SPSS因子分析工具,使用其中的主成分分析法,对指标成分进行了分析,并提取其中特征值大于1的前五个成分。因子提取在大数据量和多指标的数据集中,应用是非常广泛的,SPSS给我们提供了这样的一个工具,非常有利于我们后期的统计工作。

作者署名:包纸

展开阅读全文

标签:SPSS因子分析重复测量

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS交叉验证方法怎么用 SPSS交叉分析怎么理解
交叉验证是一种多维度的数据分析法,可以将多个变量进行交叉组合,生成二维或多维分析表格,以此展现出变量之间的关联性以及潜在规律。今天我就以SPSS交叉验证方法怎么用,SPSS交叉分析怎么理解这两个问题为例,来向大家讲解一下SPSS中关于交叉验证法的相关知识。
2025-09-18
SPSS数据排序如何设置 SPSS数据排序功能最大值和最小值
数据分析作为SPSS的重要主题,包含了数量计算、数据预测、数值对比等方面,在汇总统计各类数值的基础上,我们常常会需要对数据进行排序比较,而排序就是根据数值的大小来进行排列。本文以SPSS数据排序如何设置,SPSS数据排序功能最大值和最小值这两个问题为例,带大家了解一下SPSS数据排序的知识。
2025-09-18
SPSS数据透视表在哪 SPSS数据透视表怎么做
在数据分析领域,我们如何查看多种数据的汇总情况呢?SPSS的图表编辑功能可以计算、分析、统计各类数值,并用三线透视表的方式来清晰呈现测量结果,这就需要研究者熟悉图表操作的功能,能够对表格的初始格式进行修改与调整。本文以SPSS数据透视表在哪,SPSS数据透视表怎么做这两个问题为例,给大家介绍一下SPSS数据透视表的相关知识。
2025-09-18
SPSS自定义表格怎么设计 SPSS自定义表格行列表头设置方法
对于进行数据分析的研究者来说,SPSS设置的初始表格需要在格式上进行进一步的调整和规范,也就是需要SPSS用户自行设置和修改图表格式,借助SPSS图表编辑的工具来操作。本文以SPSS自定义表格怎么设计,SPSS自定义表格行列表头设置方法这两个问题为例,给大家介绍一下SPSS自定义表格的相关知识。
2025-09-18
SPSS数据加权有什么用 SPSS数据加权与不加权的区别
数据加权是数据分析过程中非常实用的一种数据分析技巧,根据每一项个案要素的重要程度,合理调整它们的总体占比,随后再进行计算,就能得到更加精准的分析结果。今天我就以SPSS数据加权有什么用,SPSS数据加权与不加权的区别这两个问题为例,来向大家讲解一下数据加权的相关知识。
2025-09-18
SPSS线性回归如何构建 SPSS线性回归自变量筛选方法
在数据分析领域,当自变量类型为定序或者定距变量的时候,我们可以借助SPSS线性回归的方法来建立变量之间函数变化关系的模型,这适用于自变量与因变量呈线性关系的情况,有助于后续的数据划分和定义。本文以SPSS线性回归如何构建,SPSS线性回归自变量筛选方法这两个问题为例,给大家介绍一下SPSS线性回归的相关知识。
2025-09-18

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: