SPSS > 使用技巧 > 用IBM SPSS Statistics进行时间序列分析预测

用IBM SPSS Statistics进行时间序列分析预测

发布时间:2021-07-14 11: 50: 02

在上节《解析SPSS软件中的日期类型变量转换》一文中,我们了解了如何在SPSS软件中,将原始数据中字符串类型的日期变量转换为SPSS的日期类型变量,学会如何转换以后,接下来我们要学习的就是如何应用到实际的统计工作中。

今天我们将使用此方法生成的日期类型变量,研究如何在SPSS中进行时间序列的分析预测。

一、绘制时序序列图

我们选用的数据如下图1所示,第一列表示时间,第二列表示对应时间的金额值,如果我们的时间变量不是日期类型的话,就需要将它转换为日期类型再进行时间序列的分析预测。

图1:数据展示
图1:数据展示

点击【分析】--【时间序列预测】--【序列图】,将金额放入变量中,时间放入时间轴标签中,然后点击确定,生成演示数据的时间序列系列图。

图2:序列图设置
图2:序列图设置

生成的序列图见下图3所示,我们可以看出金额变量随着时间的变化,越来越少,说明它们之间是具有一定的时序关系的,下面我们就可以建立时间序列模型进行相应的预测了。

图3:序列图展示
图3:序列图展示

二、创建时间序列模型

点击【分析】--【时间序列预测】--【创建传统模型】,然后在因变量中填入金额项,下方的方法选项中默认采用“专家建模器”,除了默认的选项外,还有指数平滑法和ARIMA法,这里我们使用专家建模器方法。

图4:变量设置
图4:变量设置

之后切换到“保存”选项卡中,设置好要保存的变量值和XML模型的保存路径,如下图5,完成配置后点击“确定”开始训练时间序列模型。

图5:保存设置
图5:保存设置

三、训练结果

完成模型的训练以后,SPSS的时间序列结果见下图6,我们可以看到模型的拟合度为0.763,属于较好的拟合范畴,在此图表中我们也可以看到接下来短时间的预测数据。

图6:时间序列结果
图6:时间序列结果

四、应用时间序列模型

模型训练成功后,我们之后要使用此时间序列模型来预测数据,就可以点击【分析】--【时间序列预测】--【应用传统模型】,然后在模型文件中选择我们模型的保存路径,再点击确定即可,具体界面见图7。

图7:应用时间序列模型
图7:应用时间序列模型

这样我们就使用IBM SPSS Statistic软件完成了一次完整的时间序列模型的分析、创建和应用,SPSS在时间序列模型上做了非常完善的支持,除了上述介绍的这些,SPSS还支持时间因果模型、季节性分解、谱分析等与时间相关的分析工具哦。

作者署名:包纸

展开阅读全文

标签:spss序列分析预测

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: