IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS神经网络怎么分区 SPSS神经网络如何解读

SPSS神经网络怎么分区 SPSS神经网络如何解读

发布时间:2022-08-19 13: 20: 05

品牌型号: DELL Vostro 3400

系统:Windows 10 64位家庭中文版(21H1)

软件版本:IBM SPSS Statistics(28.0.0.1)

SPSS多层感知器神经网络分析是基于模仿人类大脑结构及思维模式的信息处理系统,可通过算法从数据中学习并形成训练模型,再将模型用于分析数据以得到预测结果,因此在进行神经网络分析时会将数据分为训练区与检验区,以便于得到准确预测数据的概率,SPSS神经网络怎么分区,SPSS神经网络如何解读呢?今天一起来看看吧。

一、SPSS神经网络怎么分区

先将现有数据表格导入SPSS中,或者在SPSS安装文件夹下的“Sample”文件夹中有很多自带的数据模板,可以用这些模板数据来体验功能效果。

SPSS自带数据模板
图1:SPSS自带数据模板

点击菜单“分析”-“神经网络”-“多层感知器”进入神经网络设置面板。

神经网络多层感知器设置
图2:神经网络多层感知器设置

在变量设置板块中,将想要预测的变量置入因变量,将类型变量加入因子,将其他连续型变量加入协变量。

神经网络变量设置
图3:神经网络变量设置

在“分区”板块可以对神经网络进行分区。

设置分区数据
图4:设置分区数据

在分区设置有两种分区方式。

1、随机分区

可以根据样本数量自动分配个案,默认是训练数据占70%,检验数据占30%,而且这两者的占比可以手动调整,从样本总量中随机划分训练样本与检验样本。

2、分区变量指定样本分区

通过给样本指定分区变量来进行分配,这样就能有目的性地将一部分样本设置为训练集,另一部分设置为检验集,并进行针对性地神经网络分析。

在完成神经网络设置后开始神经网络分析,SPSS会自动生成输出文档,包括网络图、模型摘要、参数估算值、预测图、自变量重要性图等。

二、SPSS神经网络如何解读

通过上面的数据可以得到一份分析报告,按照报告中数据与表格展现顺序,我们来看看神经网络分析数据的解读方法。

1、个案处理摘要

个案处理摘要
图5:个案处理摘要

这里是SPSS对数据的分区与采用摘要数据,共1500条数据,随机分配了1046条作为训练集数据,占比69.7%,剩余数据则作为检验集数据,占比30.3%,没有无效数据,所以“排除”为0。

2、网络信息

网络信息
图6:网络信息

这一部分内容分三层,显示了本次分析所设置的输入层影响因子与协变量内容,隐藏层单元数,以及输出层的内容。

3、神经网络图

神经网络图
图7:神经网络图

这一部分可以看到不同变量之间的颜色、图形各不相同,一个变量的线条颜色越深,代表其在计算分析中的权重越高;变量的板块越大,则代表其价值越高。

4、分类

分类数据
图8:分类数据

从分类数据中可以看到随机分配的训练集与检验集中样本数据的预测正确率仅有“59.3%”和“58.6%”,说明本次分析效果不是很好,正确率较低。(正确率低不代表神经网络算法不好,而是说明这份样本数据不适合用神经网络算法来进行分析)

5、自变量重要性与正态化重要性

自变量重要性
图9:自变量重要性

自变量重要性与正态化重要性的结果一致,不过一个以数值与表格形式体现,一个以柱状图形式体现。

正态化重要性
图10:正态化重要性

这两个报告数据显示,各个变量对是否违约的结果影响力大小排列是:工龄>信用卡负债>负债率>其他负债>教育>年龄>收入>地址。

三、SPSS神经网络设置技巧

在上面进行神经网络分析示例时,介绍了设置变量与分区的方法,接下来讲一讲其他选项的设置技巧。

1、输出设置

输出设置
图11:输出设置

建议在输出设置中将能勾选的项目全部勾选上,尤其时“网络结构”中的“描述”、“图”与“突触权重”,以及下面的“自变量重要性分析”,这几个还是比较重要的。

2、保存设置

保存设置
图12:保存设置

在保存设置中,可以将图中两个“因变量的预测值或类别”与“因变量的预测拟概率”选项都勾选上。

主要就是设置“变量”、“分区”、“输出”与“保存”四项,其他的选项设置可以根据自己需要再进行修改。

以上便是SPSS神经网络怎么分区,SPSS神经网络如何解读的全部内容了,大家如果想要了解更多数据分析技巧,欢迎关注IBM SPSS中文网站。

 

作者:∅

展开阅读全文

标签:IBM SPSS StatisticsSPSS教程神经网络IBM SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss均值怎么求 spss均值结果解释
平均值反映了一组数据的集中趋势,在经济社会各个领域都有非常广泛的应用。可以采用很多种方法求解平均值,如带有统计功能的计算器,Excel,SPSS等。关于SPSS均值怎么求,SPSS均值结果解释是什么,本文借助实例,向大家作简单的介绍。
2023-12-04
spss矩阵散点图怎么做 spss矩阵散点图怎么看相关性
随着经济社会的发展,人们愈加重视数据的作用,数据可视化作为应用的热点,已经渗透到生产生活的各个方面。矩阵散点图可以直观反映多变量间相互关系,是数据可视化的具体应用。关于SPSS矩阵散点图怎么做,SPSS矩阵散点图怎么看相关性,本文借助实例向大家作简单介绍。
2023-12-01
spss合并文件的操作步骤 spss合并文件变量怎么配对
可以使用两种方式合并两个数据文件中的数据,一是包含相同个案但不同变量的数据集,另一个是包含相同变量但不同个案的数据集,本文主要向大家介绍如何合并包含相同个案但不同变量的数据集。关于SPSS合并文件的操作步骤是什么,SPSS合并文件变量怎么配对,结合实例,向大家作简单介绍。
2023-11-06
spss计算变量如何计算平方 spss计算变量如何全选
以变量为单位管理并处理数据,是使用SPSS进行建模统计分析的基础。对于有经验的数据分析工作者,这部分工作要占整个统计分析工作的70%以上。管理变量大致包括两部分内容,变量赋值(或称为变量计算)和变量转化。本文主要向大家介绍变量计算的内容,例如SPSS计算变量如何计算平方,SPSS计算变量如何全选。
2023-11-04
spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
2023-11-02
spss回归分析如何操作 spss回归分析的基本步骤
通过回归分析,可以了解变量间是否存在相互依赖的定量关系。根据方程类型,回归分析可以分为线性回归和非线性回归。根据变量的数目多少,回归分析可以分为一元回归分析和多元回归分析。本文以最简单的一元线性回归分析为例向大家介绍SPSS回归分析如何操作,SPSS回归分析的基本步骤。
2023-10-31

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: