IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS神经网络怎么分区 SPSS神经网络如何解读

SPSS神经网络怎么分区 SPSS神经网络如何解读

发布时间:2022/08/19 13:20:05

品牌型号: DELL Vostro 3400

系统:Windows 10 64位家庭中文版(21H1)

软件版本:IBM SPSS Statistics(28.0.0.1)

SPSS多层感知器神经网络分析是基于模仿人类大脑结构及思维模式的信息处理系统,可通过算法从数据中学习并形成训练模型,再将模型用于分析数据以得到预测结果,因此在进行神经网络分析时会将数据分为训练区与检验区,以便于得到准确预测数据的概率,SPSS神经网络怎么分区,SPSS神经网络如何解读呢?今天一起来看看吧。

一、SPSS神经网络怎么分区

先将现有数据表格导入SPSS中,或者在SPSS安装文件夹下的“Sample”文件夹中有很多自带的数据模板,可以用这些模板数据来体验功能效果。

SPSS自带数据模板
图1:SPSS自带数据模板

点击菜单“分析”-“神经网络”-“多层感知器”进入神经网络设置面板。

神经网络多层感知器设置
图2:神经网络多层感知器设置

在变量设置板块中,将想要预测的变量置入因变量,将类型变量加入因子,将其他连续型变量加入协变量。

神经网络变量设置
图3:神经网络变量设置

在“分区”板块可以对神经网络进行分区。

设置分区数据
图4:设置分区数据

在分区设置有两种分区方式。

1、随机分区

可以根据样本数量自动分配个案,默认是训练数据占70%,检验数据占30%,而且这两者的占比可以手动调整,从样本总量中随机划分训练样本与检验样本。

2、分区变量指定样本分区

通过给样本指定分区变量来进行分配,这样就能有目的性地将一部分样本设置为训练集,另一部分设置为检验集,并进行针对性地神经网络分析。

在完成神经网络设置后开始神经网络分析,SPSS会自动生成输出文档,包括网络图、模型摘要、参数估算值、预测图、自变量重要性图等。

二、SPSS神经网络如何解读

通过上面的数据可以得到一份分析报告,按照报告中数据与表格展现顺序,我们来看看神经网络分析数据的解读方法。

1、个案处理摘要

个案处理摘要
图5:个案处理摘要

这里是SPSS对数据的分区与采用摘要数据,共1500条数据,随机分配了1046条作为训练集数据,占比69.7%,剩余数据则作为检验集数据,占比30.3%,没有无效数据,所以“排除”为0。

2、网络信息

网络信息
图6:网络信息

这一部分内容分三层,显示了本次分析所设置的输入层影响因子与协变量内容,隐藏层单元数,以及输出层的内容。

3、神经网络图

神经网络图
图7:神经网络图

这一部分可以看到不同变量之间的颜色、图形各不相同,一个变量的线条颜色越深,代表其在计算分析中的权重越高;变量的板块越大,则代表其价值越高。

4、分类

分类数据
图8:分类数据

从分类数据中可以看到随机分配的训练集与检验集中样本数据的预测正确率仅有“59.3%”和“58.6%”,说明本次分析效果不是很好,正确率较低。(正确率低不代表神经网络算法不好,而是说明这份样本数据不适合用神经网络算法来进行分析)

5、自变量重要性与正态化重要性

自变量重要性
图9:自变量重要性

自变量重要性与正态化重要性的结果一致,不过一个以数值与表格形式体现,一个以柱状图形式体现。

正态化重要性
图10:正态化重要性

这两个报告数据显示,各个变量对是否违约的结果影响力大小排列是:工龄>信用卡负债>负债率>其他负债>教育>年龄>收入>地址。

三、SPSS神经网络设置技巧

在上面进行神经网络分析示例时,介绍了设置变量与分区的方法,接下来讲一讲其他选项的设置技巧。

1、输出设置

输出设置
图11:输出设置

建议在输出设置中将能勾选的项目全部勾选上,尤其时“网络结构”中的“描述”、“图”与“突触权重”,以及下面的“自变量重要性分析”,这几个还是比较重要的。

2、保存设置

保存设置
图12:保存设置

在保存设置中,可以将图中两个“因变量的预测值或类别”与“因变量的预测拟概率”选项都勾选上。

主要就是设置“变量”、“分区”、“输出”与“保存”四项,其他的选项设置可以根据自己需要再进行修改。

以上便是SPSS神经网络怎么分区,SPSS神经网络如何解读的全部内容了,大家如果想要了解更多数据分析技巧,欢迎关注IBM SPSS中文网站。

 

作者:∅

标签:IBM SPSS StatisticsSPSS教程神经网络IBM SPSS

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
SPSS线性回归如何预测 SPSS怎么得到预测值
SPSS线性回归预测的主要步骤是通过线性回归分析构建模型,得出线性回归方程,然后对整体效果进行F检验和T检验,证实回归方程的正确性。最后,给定一个自变量值,进行点预测和区间预测。下面,小编具体来介绍一下SPSS线性回归如何预测,SPSS怎么得到预测值的方法。
2022-01-10

咨询热线

在线咨询

限时折扣