SPSS > 使用技巧 > SPSS神经网络怎么分区 SPSS神经网络如何解读

SPSS神经网络怎么分区 SPSS神经网络如何解读

发布时间:2022-08-19 13: 20: 05

品牌型号: DELL Vostro 3400

系统:Windows 10 64位家庭中文版(21H1)

软件版本:IBM SPSS Statistics(28.0.0.1)

SPSS多层感知器神经网络分析是基于模仿人类大脑结构及思维模式的信息处理系统,可通过算法从数据中学习并形成训练模型,再将模型用于分析数据以得到预测结果,因此在进行神经网络分析时会将数据分为训练区与检验区,以便于得到准确预测数据的概率,SPSS神经网络怎么分区,SPSS神经网络如何解读呢?今天一起来看看吧。

一、SPSS神经网络怎么分区

先将现有数据表格导入SPSS中,或者在SPSS安装文件夹下的“Sample”文件夹中有很多自带的数据模板,可以用这些模板数据来体验功能效果。

SPSS自带数据模板
图1:SPSS自带数据模板

点击菜单“分析”-“神经网络”-“多层感知器”进入神经网络设置面板。

神经网络多层感知器设置
图2:神经网络多层感知器设置

在变量设置板块中,将想要预测的变量置入因变量,将类型变量加入因子,将其他连续型变量加入协变量。

神经网络变量设置
图3:神经网络变量设置

在“分区”板块可以对神经网络进行分区。

设置分区数据
图4:设置分区数据

在分区设置有两种分区方式。

1、随机分区

可以根据样本数量自动分配个案,默认是训练数据占70%,检验数据占30%,而且这两者的占比可以手动调整,从样本总量中随机划分训练样本与检验样本。

2、分区变量指定样本分区

通过给样本指定分区变量来进行分配,这样就能有目的性地将一部分样本设置为训练集,另一部分设置为检验集,并进行针对性地神经网络分析。

在完成神经网络设置后开始神经网络分析,SPSS会自动生成输出文档,包括网络图、模型摘要、参数估算值、预测图、自变量重要性图等。

二、SPSS神经网络如何解读

通过上面的数据可以得到一份分析报告,按照报告中数据与表格展现顺序,我们来看看神经网络分析数据的解读方法。

1、个案处理摘要

个案处理摘要
图5:个案处理摘要

这里是SPSS对数据的分区与采用摘要数据,共1500条数据,随机分配了1046条作为训练集数据,占比69.7%,剩余数据则作为检验集数据,占比30.3%,没有无效数据,所以“排除”为0。

2、网络信息

网络信息
图6:网络信息

这一部分内容分三层,显示了本次分析所设置的输入层影响因子与协变量内容,隐藏层单元数,以及输出层的内容。

3、神经网络图

神经网络图
图7:神经网络图

这一部分可以看到不同变量之间的颜色、图形各不相同,一个变量的线条颜色越深,代表其在计算分析中的权重越高;变量的板块越大,则代表其价值越高。

4、分类

分类数据
图8:分类数据

从分类数据中可以看到随机分配的训练集与检验集中样本数据的预测正确率仅有“59.3%”和“58.6%”,说明本次分析效果不是很好,正确率较低。(正确率低不代表神经网络算法不好,而是说明这份样本数据不适合用神经网络算法来进行分析)

5、自变量重要性与正态化重要性

自变量重要性
图9:自变量重要性

自变量重要性与正态化重要性的结果一致,不过一个以数值与表格形式体现,一个以柱状图形式体现。

正态化重要性
图10:正态化重要性

这两个报告数据显示,各个变量对是否违约的结果影响力大小排列是:工龄>信用卡负债>负债率>其他负债>教育>年龄>收入>地址。

三、SPSS神经网络设置技巧

在上面进行神经网络分析示例时,介绍了设置变量与分区的方法,接下来讲一讲其他选项的设置技巧。

1、输出设置

输出设置
图11:输出设置

建议在输出设置中将能勾选的项目全部勾选上,尤其时“网络结构”中的“描述”、“图”与“突触权重”,以及下面的“自变量重要性分析”,这几个还是比较重要的。

2、保存设置

保存设置
图12:保存设置

在保存设置中,可以将图中两个“因变量的预测值或类别”与“因变量的预测拟概率”选项都勾选上。

主要就是设置“变量”、“分区”、“输出”与“保存”四项,其他的选项设置可以根据自己需要再进行修改。

以上便是SPSS神经网络怎么分区,SPSS神经网络如何解读的全部内容了,大家如果想要了解更多数据分析技巧,欢迎关注IBM SPSS中文网站。

 

作者:∅

展开阅读全文

标签:IBM SPSS StatisticsSPSS教程神经网络IBM SPSS

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: