IBM SPSS Statistics 中文网站 > 使用技巧 > R语言方差分析p值怎么计算 R语言方差分析例题

R语言方差分析p值怎么计算 R语言方差分析例题

发布时间:2022-04-26 15: 40: 13

品牌型号:微星 gl62m

系统:Windows 11 

软件版本:R 4.1.3

作为统计软件的一员,方差分析在R语言里也是必不可少的一门课程,在方差分析的结果里,p值更是重中之重,本文就结合例题来介绍一下R语言中方差分析的p值怎么计算,R语言方差分析例题。因为一一介绍各种情况的篇幅过长,这里就以两样本均值的假设检验为例来说明。

一、r语言方差分析p值怎么计算

设两样本分别为X和Y,基于中心极限定理,无论X和Y属于什么分布,只要样本量足够大,它们的均值服从正态分布。由于两者是独立样本,故而它们均值也服从正态分布。

1、大样本情况下

设样本X为x1、x2、⋯、xn,样本Y为y1、y2、⋯、ym,它们的均值分布为:X、Y,方差为S2x/n、S3y/m

那么对应的统计量为:

图1:大样本的统计量
图1:大样本的统计量

 

p值是说在原假设成立的条件下,原假设发生的概率,若是p值小于0.05,发生概率小于0.05时,认为是小概率发生了,即是差异性显著,拒绝原假设。

公式:

双边假设的p值:

图2:双边假设的p值
图2:双边假设的p值

 

将系列代码输入R语言:

图3:大样本的p值
图3:大样本的p值

 

结果:得到[1] 1.608277e-05

2、小样本情况下:

输入系列代码:

 

图4:小样本的p值
图4:小样本的p值

 

得到结果:[1] 4.280554e-13

二、R语言的方差分析例题

接下来就来实战演练一下R语言如何进行方差分析的。

1.导入数据

  这里就直接调用R语言自带的一个数据库——分析不同的花的亚种,其花瓣的特征如长度,是否存在差异。

图5:引用数据
图5:引用数据

 

其中Species将鸢尾花分为三种,其它4个指标分别表示鸢尾花的花的特征。比如Sepal.Length表示花瓣的长度。这里Species成为分组变量,也就是所谓的“因素”(相当于回归分析中的x);花瓣的长度为结果变量(相当于回归分析中的y),是比较组间均值差异的变量指标。

2.键入R语言方差分析的因子(自变量和因变量)

图6:引入因子
图6:引入因子

 

3.键入avol函数命令

图7:键入avol命令
图7:键入avol命令

 

按回车,就可以得到初步结果

图8:avol分析初步结果
图8:avol分析初步结果

 

4.键入summary()函数提取方差分析结果

图9:summary函数
图9:summary函数

 

结果解释:p值远小于0.001,说明鸢尾花的品种这个因素,对鸢尾花花瓣的长度,有显著的影响;或通俗点说,不同种类的鸢尾花的花瓣长度(均值)显著不同(至少有两种显著不同)

三、方差分析在各大统计软件中孰优孰劣

Stata还是最简单高效。就两个命令,一个叫oneway,一个叫anova。oneway用于做单因素方差分析,anova则用于做多因素方差分析。

Excel、SPSS中也很方便,都有对应的选项可以直接分析。SPSS更胜于excel,excel一般用于呈现数据,而spss则是统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品,功能更强大,将spss用于方差分析更加简易。

在R语言和python中就要涉及到一些计算机语言了,没有形象具体的对话框和选项,相对来说啰嗦一些。不过更加严谨。

四、总结

这就是这次带来的R语言方差分析p值怎么计算,R语言方差分析例题,希望对大家有所帮助。

展开阅读全文

标签:SPSSIBM SPSS Statistics多元方差分析方差分析SPSS教程

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
spss多元线性回归分析操作步骤,spss多元线性回归分析结果解读
spss多元线性回归分析操作步骤,本文会以客流量、销售量与销售额的线性关系演示spss的多元线性回归分析操作步骤,并进行spss多元线性回归分析结果解读。
2022-05-07
spss怎么做逐步回归分析 逐步回归分析spss结果解读
spss怎么做逐步回归分析?逐步回归分析是多元线性回归分析的一种,可通过spss回归分析中的“步进”法来做逐步回归分析。本文会运用例子演示逐步回归分析步骤,并进行逐步回归分析spss结果解读。
2022-05-12
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
最新文章
spss赋值后为什么显示不出来 spss赋值后为什么空白不显示
在现代数据分析中,SPSS(统计产品与服务解决方案)被广泛应用于社会科学、市场研究和健康科学等领域。尽管其功能强大,但在实际操作中,用户可能会遇到一些问题,例如赋值后数据不显示或空白。本文将探讨这些问题,并提供解决方案。
2024-06-14
spss异常值设置在哪里操作 spss异常值筛选后如何处理
在数据分析过程中,异常值是一个常见的问题,它可能会对分析结果产生影响。因此,正确处理异常值是非常重要的。本文将探讨SPSS如何处理异常值的方法。关于SPSS异常值设置在哪里操作,SPSS异常值筛选后如何处理的内容,本文向大家作简单介绍。
2024-05-22
spss去除无效数据方法 spss去除极端值方法
统计学是一门旨在收集、分析和解释数据的学科。在统计学中,数据的准确性和有效性至关重要。然而,有时候我们会遇到无效数据,这些数据可能是错误的、缺失的或者不完整的,它们会对统计结果产生严重的影响。使用SPSS对数据进行统计时,也常常会面对这些问题,关于SPSS去除无效数据方法,SPSS去除极端值方法的内容,本文向大家作简单介绍。
2024-05-08
spss异常值处理办法 spss异常值检验步骤
SPSS异常值检查是数据分析中一个非常重要的步骤。异常值指的是数据集中与其他观测值明显不同的数值。这些异常值可能会对统计分析结果产生影响,使用SPSS进行统计分析前,要对数据进行简单分析,例如查看有无缺失值,进行异常值检验等。有关SPSS异常值处理办法,SPSS异常值检验步骤的内容,本文向大家作简单介绍。
2024-04-24
spss筛选变量不能共线 spss筛选出没有缺失值的样本方法
SPSS是一种强大的统计分析软件,广泛应用于各种研究领域。在进行数据分析时,研究人员经常会遇到共线性问题。共线性是指自变量之间存在高度相关性的情况,这可能会导致模型不稳定、参数估计不准确甚至无法得出有效的结论。因此,共线性诊断和筛选变量在SPSS中变得尤为重要。有关SPSS筛选变量不能共线,SPSS筛选出没有缺失值的样本方法的内容,本文向大家作简单介绍。
2024-04-17
spss筛选功能在什么地方 spss筛选怎么做
SPSS软件是一款被广泛应用于数据分析和统计学习领域的工具。在数据处理过程中,筛选是一个非常重要的步骤,它可以帮助用户快速地找到所需的数据并进行进一步的分析。SPSS软件提供了强大的筛选功能,使用户能够轻松地筛选出符合特定条件的数据,从而提高数据处理的效率和准确性。SPSS筛选功能在什么地方,SPSS筛选怎么做,本文向大家作简单介绍。
2024-04-10

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。