SPSS > 使用技巧 > spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正

spss卡方检验结果线性关联是什么 spss卡方检验结果没有连续性校正

发布时间:2023-11-03 10: 00: 00

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。

一、spss卡方检验结果线性关联是什么

对于有序分布的离散型变量,进行卡方检验时,除了关注皮尔逊卡方检验结果之外,还须关注线性关联结果。有序分布的离散型变量如年代,时间等。例如有人统计了连续几年某项考试的考生数据,根据通过率,能否得出该项考试通过率随时间发生变化,即通过率与时间之间是否有线性关系。原始数据如图1所示。

待分析数据
图1 待分析数据

卡方检验的方法大家可以登录SPSS中文网站学习,这里不再赘述,本文主要讨论卡方检验结果的解读与分析。按照卡方检验的方法,处理数据后,结果如图2所示。

卡方检验结果
图2 卡方检验结果

卡方检验结果中,首先关注皮尔逊卡方,其渐进显著性为0.987,大于0.05,此时应接受卡方检验的原假设,即两组变量间不存在相关关系,认为年份和通过率之间没有相关性。如果渐进显著性小于0.05,则接受备选假设,认为两组变量间存在相关关系,认为年份和通过率之间存在相关性。由于年份为连续性离散变量,此时还应关注线性关联统计量,同样道理,线性关联渐进显著性为0.547,大于0.05,两组变量间不存在线性相关关系,即通过率不随着年份变化而呈线性变化。

对于存在顺序的离散型变量,我们除需要关注皮尔逊卡方检验结果之外,还应关注线性关联统计量,线性关联统计量渐进显著性大于0.05,认为两组变量之间不存在线性关系,小于0.05,则存在线性关系。由于数据结构不同,卡方检验还会产生不同的分析结果,例如连续性校正统计量。很多用户会疑惑为什么有时作卡方检验会出现连续性校正统计量,有时没有,本文第一小节中实例就不存在连续性校正统计量,原因在第二小节中向大家介绍。

二、spss卡方检验结果没有连续性校正

卡方检验过程中以离散型变量代替了连续性变量进行计算,因此在频数小于5或数据量低于40时,计算结果会出现偏斜,特别是对于2*2型数据。所谓2*2型数据,是指待分析数据有两个离散变量,每个离散变量又分别有两种情况。在频数小于5或数据量低于40时,基于超几何分布的费舍尔精确检验更为适合2*2型数据。

例如考察发病率与性别的关系,数据如图3所示,其中性别1代表男性,性别2代表女性,1代表发病,2代表未发病,人数为各组统计人数。数据结构为2*2型,对这组数据进行卡方分析,结果如图4所示。

性别与发病人数统计数据
图3 性别与发病人数统计数据

与第一小节中卡方检验结果相比,卡方分析结果中多了连续性校正和费希尔精确检验两项,并且b处标记仅对2*2表进行计算。

卡方检验结果
图4 卡方检验结果

因此对于非2*2表,卡方检验不会提供连续性修正结果。

本文介绍了SPSS卡方检验结果线性关联是什么,SPSS卡方检验为什么没有连续性校正的内容。对于有序的离散型变量,除了关注皮尔逊卡方检验结果之外,还应关注线性关联统计量,线性关联统计量反应了变量之间是否存在线性关系。对于非2*2结构数据,不符合超几何分布的应用条件,因此不会提供连续性修正结果。

展开阅读全文

标签:卡方检验SPSS卡方检验SPSS卡方检验步骤配对卡方检验SPSSSPSS卡方检验四格表SPSS卡方

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS ROC阈值怎样确定 SPSS ROC阈值选择导致敏感度过低怎么办
说到阈值分析,我们脑海中可能会想到常规的寻找阈值关键临界点的分析方式(例如在医学当中会通过阈值分析的方式来确定药物在病人体内生效的时间临界点)。但是在有些分析场景中,就需要用到ROC曲线作为阈值分析的工具,ROC曲线作为阈值分析中的一个重要工具,可以用来找到数据点位发生明显截断变化的临界点。下面以SPSS为例,给大家介绍SPSS ROC阈值怎样确定,SPSS ROC阈值选择导致敏感度过低怎么办。
2025-12-17
SPSS趋势卡方怎么做 SPSS趋势卡方检验怎么看正相关
趋势卡方是SPSS中检验变量相关性的方法之一,当我们的分析数据中存在多个变量时,就可以使用趋势卡方来检验这些变量是否相互关联、相互影响。检验完毕后,我们也可以根据这些检验结果来选择更加合适的数据分析模型。今天我就以SPSS趋势卡方怎么做,SPSS趋势卡方检验怎么看正相关这两个问题为例,来向大家讲解一下趋势卡方的相关知识。
2025-12-17
SPSS如何计算线性回归 SPSS线性回归数据分析
SPSS是一款功能十分强大的数据分析软件,它将原本复杂的数据分析工作变得简洁化,并通过友好的图像界面满足普罗大众的日常需求。而线性回归是SPSS中最核心的功能模块之一。今天我就以SPSS如何计算线性回归,SPSS线性回归数据分析这两个问题为例,来向大家讲解一下有关线性回归的知识。
2025-12-17
SPSS标准化残差怎么计算 SPSS标准化残差图怎么看
回归分析是SPSS中的重量级分析模型,而其中的标准化残差则是用于观察变量与回归模型之间的适配程度。通过残差值,我们可以找到数据中隐藏的极端个案。在医药学、基因分析等领域,实验人员经常借助标准化残差来找寻诸多分析结果中的特殊个案或异变量,进而对这些特殊的案例进行深度研究。今天我就以SPSS标准化残差怎么计算,SPSS标准化残差图怎么看这两个问题为例,来向大家讲解一下有关标准化残差的相关知识。
2025-12-17
SPSS结果中显著性水平怎么看 SPSS输出查看器内容保存方式
作为一款专业的数据分析软件,SPSS软件凭借着自身专业的功能与过硬的数据分析本领,受到了众多用户的青睐。而在使用SPSS的过程中,显著性分析是大家经常会遇到的问题。显著性分析的主要作用是帮助我们分析两组或者多组变量之间的显著性关系,在得到数据显著性分析的结果后,会需要把数据内容进行保存和留用。接下来给大家介绍SPSS结果中显著性水平怎么看,SPSS输出查看器内容保存方式的具体内容。
2025-12-17
如何将问卷星中的数据导入SPSS 如何对问卷星的数据进行SPSS分析
如今无论是在职场还是大学校园,都经常会用到问卷调查。问卷调查可以帮我们快速收集用户数据,了解用户的需求、关注点,帮助我们从数据中分析出研究方向、需要如何改进。而问卷星是常用的用来收集用户问题的问卷调查软件之一。下面就来说说如何将问卷星中的数据导入SPSS,如何对问卷星的数据进行SPSS分析的相关内容。
2025-12-17

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: