P值是在检验分析中用于判定假设出现概率的参数,如果P值很小,说明原假设出现的可能性很小,因此可以拒绝原假设。在假设检验分析中,大多都会使用P值作为判定假设的参数,比如常用的t检验、卡方检验、ANOVA检验等。本文会教大家SPSS计算P值和卡方值的方法,并演示SPSS计算P值具体步骤,帮助大家更好地理解相关概念。
卡方检验是由皮尔逊提出的一种统计检验方法。在一定的置信水平下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率和期望概率是否一致,根据实际概率和期望概率的符合程度,了解两组定类变量的相关性。利用SPSS可以迅速的完成卡方检验,避免进行大量的数学计算。关于SPSS卡方检验结果怎么看,SPSS卡方检验结果如何解读,本文结合实例,向大家作简单的介绍。
对于两组连续性变量,一般通过回归分析判断两者是否存在相关关系。对于离散型变量,则需借助卡方检验判断两者之间是否存在相关关系。变量数据类型不同,SPSS卡方检验提供的结果形式也有所不同,因此很多用户会感到不解。本文结合实例向大家介绍SPSS卡方检验结果线性关联是什么,SPSS卡方检验结果没有连续性校正原因是什么。
对于两组定类变量,如果想了解它们之间是否存在线性相关关系,可以借助趋势卡方检验(Trend χ2 Test),根据趋势卡方检验结果可以判断变量间是否存在相关关系,并且可以进一步了解变量间相关关系是否为线性相关关系。关于SPSS卡方趋势检验怎么做,SPSS卡方趋势检验步骤是怎样的,本文结合实例向大家做简单的介绍。
微信公众号