SPSS > 使用技巧 > 为什么IBM SPSS Statistics更适合做大数据分析

为什么IBM SPSS Statistics更适合做大数据分析

发布时间:2021-02-25 11: 50: 06

在这个大数据的时代,数据每时每刻都在产生。如何高效从这些数据中筛选、分析、提炼出有用的信息,成了当下世界的一个共同课题。我们对数据进行分析最重要的是得到想要的结果,这其中的过程当然是希望软件能够帮助我们解决。IBM SPSS Statistics作为一款数据分析软件,为我们提供了许多内置功能,而且操作简单易于上手,适合当今快节奏的大数据分析。

大数据的字面意思是巨量的数据集合,具体指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。大数据有五大特点:大量、高速、多样、低价值密度、真实性。我们结合大数据的特点和IBM SPSS Statistics的特点,来探讨为什么在当今这个时代为什么IBM SPSS Statistics更适合做大数据分析。

1、IBM SPSS Statistics操作界面友好

IBM SPSS一大的优点是操作界面友好,输出结果美观漂亮。它是采用人机交互界面的统计软件,在人机交互型统计软件中具有优势,从1995年至今在这条路上已经更新迭代了许多版。早已成为同类软件模仿和学习的对象之一。

由于数据量庞大和需要的操作很多,大数据的处理是一个十分复杂的过程。如果在此过程中还采用命令行交互,再好的分析师也难免出现差错。所谓失之毫厘,谬以千里,为了分析结果的正确和处理过程的简化。选用交互界面友好的IBM SPSS就显得十分重要。

图1:数据窗口
图2:变量窗口

2、IBM SPSS Statistics是易学易用的软件

大数据一个最主要的特点是大量,这个时代要处理的数据远超人们的想象。需要进行大数据分析的不仅仅是数据分析师,还有一些刚入门的新手。IBM SPSS刚好具有易学易用的特点。

首先IBM SPSS易于操作,易于入门,结果易于阅读,对统计软件的学习不会冲淡的主题,这样研究人员就可以将精力集中在大数据的结果分析上,而不是忙于编程设计。

其次由于SPSS内置了许多数学工具,从某种意义上来说,SPSS软件还可以帮助数学功底不够的使用者学习运用现代统计技术。因为使用者在使用分析软件的时候只是想得到分析的结果,并不想去关注具体数学公式和运算的过程。

3、IBM SPSS Statistics具有强大的编程能力,支持二次开发

虽然SPSS以简洁友好的交互界面著称,但这并不意味着SPSS没有编程和二次开发功能。SPSS内置了编程功能,如果自带功能不能满足需求,我们可以自己编写功能去适应开发的要求。绝大部分的功能都可以通过软件自带的命令语句来完成。

如果自带的命令语句还是无法完成我们的需求,SPSS还可以借助外部软件来拓展功能。SPSS不仅可以用自带的功能进行编程,还可以使用Python去编写程序代码来实现更强大的功能。SPSS提供的拓展编程的功能和特性让SPSS成为强大的统计开发平台。

图3:编程功能展示界面
图4:python编写拓展包界面
图5:自带的编程界面

4、IBM SPSS Statistics支持丰富的数据源

数据分析的起点是数据的收集,想要获取更加立体,更加多元的数据就必须要从各个渠道收集数据。从各个数据渠道收集到的数据格式各不相同,而我们在将这些数据综合在一起进行数据分析的时候必须统一他们的规格,这就要求分析软件支持各种数据源。

这些数据可能来自各种数据库,可能是一些表格,可能是来自网页。IBM SPSS有应对各种各样数据源的专门方法。比如来自dBASE、foxbase等软件产生的*dbf文件,自带文本编辑器软件可以将这些数据翻译成ASCII码然后再进行转码,形成可以使用的数据。Excel的*xls类数据也可以转换成SPSS数据文件,甚至其他数据分析软件形成的数据,SPSS也可以支持。

不但在数据输入时,支持各式各样的数据类型。在数据输出时,分析的结果可以转换成多种我们日常使用的格式。数据分析的结果可以保存为*txt、word、PPT、html格式的文件。

图6:SPSS支持的数据格式展示

海纳百川有容乃大,SPSS既有互动界面,又有编程界面。既适用于新手学习,又能满足专业的需求。既可以自主建立数据库,又可以从外部导入数据库。大数据时代数据各式各样,需要分析软件做到统筹各种格式的数据再进行分析。IBM SPSS的优势是大数据分析所需要,较之其他软件IBM SPSS是更适合大数据分析的。

作者:何必当真

展开阅读全文

标签:SPSS数据分析软件

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: