SPSS > 使用技巧 > spss线性回归残差图怎么做 spss线性回归残差图分析解读

spss线性回归残差图怎么做 spss线性回归残差图分析解读

发布时间:2022-09-05 12: 00: 49

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

在线性回归分析过程中,对数据进行统计学检验是非常必要的,否则即便得出R方接近1的回归分析结果也不具有实际的意义,在众多的数据检验中,残差图的绘制尤为重要,残差图可以观测数据是否独立,方差是否齐性,当然手工绘制残差图非常麻烦,需要进行大量的计算,利用专业的统计分析软件如SPSS,我们可以非常简便的绘制残差图,下面就让我们结合实际案例,了解如何使用SPSS制作线性回归残差图,并说明在使用SPSS线性回归残差图进行分析时,需要注意的一些问题。

一、SPSS线性回归残差图怎么做

为了便于大家理解,我们这里列举一个实例,图1是大致符合方程Y=2.36X+5.63的两组数据,我们对其进行线性回归分析。

分析数据
图1 分析数据

依次点击【分析】,【回归】,【线性】,如图2所示。

进行线性回归分析
图2 进行线性回归分析

我们首先指定变量,本例中Y是因变量,X是自变量,因此将Y指定为因变量,将X指定为自变量,然后点击图按钮,在弹出的窗口中,将ZRESID指定为Y,将ZPRED指定为X,其中ZRESID代表进行线性回归分析时的标准化残差,ZPRED代表由回归方程得出的预测值,两者构建的图即为残差图,残差图有什么意义,我们将在第二小节中向大家介绍。

绘制线性回归残差图
图3 绘制线性回归残差图

二、SPSS线性回归残差图分析解读

所谓残差,是指预测值与实际值之间的差值,公式如图4所示:

残差计算公式
图4 残差计算公式

残差应该服从正态分布,均匀分布于Y=0直线两侧,如果残差逐渐增大,说明Y值可能是随着时间空间自行变化的变量,并非由X变化引起,如果残差呈梯形,S型等分布于Y=0直线两侧,说明数据存在方差不齐性。

标准化残差图
图5 标准化残差图

图5时本例数据回归标准化残差图,回归标准化残差均匀分布于Y=0直线两侧,且位于Y=±2之间,说明数据符合线性回归分析要求,且线性关系良好。

三、SPSS线性回归分析其他要点说明

线性回归分析不应只关注R方和线性回归方程,要重视数据检验,除上述的残差图之外,我们还应关注结果中以下两个方面,首先是ANOVA表,通过ANOVA表中的F检验,我们可以了解线性回归分析是否具有统计学意义,F检验显著性小于0.05,说明在95%置信水平下,线性回归分析具有统计学意义,本例中F检验显著性水平为0,小于0.05,具有统计学意义。

ANOVA表格
图6 ANOVA表格

然后我们需要关注系数t检验,如图7所示,对于X前系数2.349,其t检验值为13.596,显著性为0,小于0.05,说明在95%的置信水平下,斜率有统计学意义,如果显著性大于0.05,则不能认为自变量和因变量间存在线性关系。

系数t检验
图7 系数t检验

在进行线性回归分析的过程中,要注意对数据进行统计学检验,确认分析结果是否具有统计学意义。

本文向大家介绍了线性回归分析过程中,需要注意的几个统计学检验,包括F检验,t检验,以及spss线性回归残差图怎么做,spss线性回归残差图分析解读方法,希望对大家的工作有所帮助。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS Statistics一元线性回归分析SPSS教程非线性回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验怎么测中位数 SPSS非参数检验z值的意义
IBM SPSS Statistics这款软件对用户非常友好,例如非参数检验、数据随机性验证等统计分析,不需要复杂的操作,跟着步骤提示进行操作,即可快速生成统计结果表,新手也能快速掌握。今天我们就围绕SPSS非参数检验怎么测中位数,SPSS非参数检验z值的意义相关内容为大家展开介绍。
2026-01-30
SPSS随机值检验步骤 SPSS随机检验结果怎么看
很多人都听过IBM SPSS Statistics这款软件,它是数据分析的可靠搭档,不仅能轻松搞定数据的整理、转换,最后还能自动生成图表,对新手非常友好。对于经常需要进行学术研究、市场调研的用户来说是个常用的选择。今天我们就来说一下SPSS随机值检验步骤,SPSS随机检验结果怎么看的相关内容。
2026-01-30
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: