SPSS > 使用技巧 > spss线性回归残差图怎么做 spss线性回归残差图分析解读

spss线性回归残差图怎么做 spss线性回归残差图分析解读

发布时间:2022-09-05 12: 00: 49

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics

在线性回归分析过程中,对数据进行统计学检验是非常必要的,否则即便得出R方接近1的回归分析结果也不具有实际的意义,在众多的数据检验中,残差图的绘制尤为重要,残差图可以观测数据是否独立,方差是否齐性,当然手工绘制残差图非常麻烦,需要进行大量的计算,利用专业的统计分析软件如SPSS,我们可以非常简便的绘制残差图,下面就让我们结合实际案例,了解如何使用SPSS制作线性回归残差图,并说明在使用SPSS线性回归残差图进行分析时,需要注意的一些问题。

一、SPSS线性回归残差图怎么做

为了便于大家理解,我们这里列举一个实例,图1是大致符合方程Y=2.36X+5.63的两组数据,我们对其进行线性回归分析。

分析数据
图1 分析数据

依次点击【分析】,【回归】,【线性】,如图2所示。

进行线性回归分析
图2 进行线性回归分析

我们首先指定变量,本例中Y是因变量,X是自变量,因此将Y指定为因变量,将X指定为自变量,然后点击图按钮,在弹出的窗口中,将ZRESID指定为Y,将ZPRED指定为X,其中ZRESID代表进行线性回归分析时的标准化残差,ZPRED代表由回归方程得出的预测值,两者构建的图即为残差图,残差图有什么意义,我们将在第二小节中向大家介绍。

绘制线性回归残差图
图3 绘制线性回归残差图

二、SPSS线性回归残差图分析解读

所谓残差,是指预测值与实际值之间的差值,公式如图4所示:

残差计算公式
图4 残差计算公式

残差应该服从正态分布,均匀分布于Y=0直线两侧,如果残差逐渐增大,说明Y值可能是随着时间空间自行变化的变量,并非由X变化引起,如果残差呈梯形,S型等分布于Y=0直线两侧,说明数据存在方差不齐性。

标准化残差图
图5 标准化残差图

图5时本例数据回归标准化残差图,回归标准化残差均匀分布于Y=0直线两侧,且位于Y=±2之间,说明数据符合线性回归分析要求,且线性关系良好。

三、SPSS线性回归分析其他要点说明

线性回归分析不应只关注R方和线性回归方程,要重视数据检验,除上述的残差图之外,我们还应关注结果中以下两个方面,首先是ANOVA表,通过ANOVA表中的F检验,我们可以了解线性回归分析是否具有统计学意义,F检验显著性小于0.05,说明在95%置信水平下,线性回归分析具有统计学意义,本例中F检验显著性水平为0,小于0.05,具有统计学意义。

ANOVA表格
图6 ANOVA表格

然后我们需要关注系数t检验,如图7所示,对于X前系数2.349,其t检验值为13.596,显著性为0,小于0.05,说明在95%的置信水平下,斜率有统计学意义,如果显著性大于0.05,则不能认为自变量和因变量间存在线性关系。

系数t检验
图7 系数t检验

在进行线性回归分析的过程中,要注意对数据进行统计学检验,确认分析结果是否具有统计学意义。

本文向大家介绍了线性回归分析过程中,需要注意的几个统计学检验,包括F检验,t检验,以及spss线性回归残差图怎么做,spss线性回归残差图分析解读方法,希望对大家的工作有所帮助。

 

作者:莱阳黎曼

展开阅读全文

标签:SPSSIBM SPSS Statistics一元线性回归分析SPSS教程非线性回归

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS里面如何快速将字符赋值 SPSS文字变量赋值
在数据分析领域,如果想要对多属性或多选项的变量进行分析,研究者需要对一些文字变量进行赋值来将字符串改为数字格式,便于后续的问卷数据统计和测量。今天,我们以SPSS里面如何快速将字符赋值,SPSS文字变量赋值这两个问题为例,带大家了解一下SPSS字符赋值的相关知识。
2025-06-30
SPSS因子负荷系数表怎么做 SPSS因素负荷是哪个值
在数据分析领域,SPSS因子分析可以从众多变量中提取出少数因子,这种方法一般是通过构建的指标体系计算出因子得分,而知晓因子负荷系数可以帮助研究者优化实验数据,从而实现对繁杂数据的标准化处理。今天,我们以SPSS因子负荷系数表怎么做,SPSS因素负荷是哪个值这两个问题为例,带大家了解一下SPSS因子负荷的相关知识。
2025-06-30
SPSS如何把多个题项变成一个维度 SPSS如何把多个题项分析出来
在回收调查问卷的数据后,研究者通常会对问卷中相关性较高的题项进行合并,这就需要运用到SPSS转换和计算变量的函数指令方法,从而使多个问卷题项变成一个维度来计算均值结果。本文以SPSS如何把多个题项变成一个维度,SPSS如何把多个题项分析出来这两个问题为例,带大家了解一下SPSS多题项合并的知识。
2025-06-27
SPSS方差齐性检验操作误区 SPSS方差齐性检验结果解读
方差齐性检验是用来检查不同数据之间的方差是否存在相似性,通过这种分析方法,可以判断不同组别数据的一致性。今天我就以SPSS方差齐性检验操作误区,SPSS方差齐性检验结果解读这两个问题为例,来向大家讲解一下SPSS当中方差齐性检验工具的操作技巧。
2025-06-27
SPSS交叉表行列优化技巧 SPSS交叉表格中行列层是什么意思
交叉表是用于分析两个或多个变量之间是否存在相互关联的验证图表,是一种非常简单且高效的数据分析工具,广泛应用在医疗、市场调研、商业分析等诸多领域。今天我就以SPSS交叉表行列优化技巧,SPSS交叉表格中行列层是什么意思这两个问题为例,来向大家讲解一下交叉表分析工具的相关知识。
2025-06-26
SPSS连续变量和分类变量的区别 SPSS连续变量和分类变量的关系
IBM SPSS Statistics是一款功能强大的统计软件,具备如数据处理、数理统计、分析预测,数据可视化等功能。借助IBM SPSS Statistics,我们可以快速完成数据分析工作,避免大量的数学计算,大大提高工作效率。使用IBM SPSS Statistics,首先要注意数据类型的设置,数据类型设置不正确,可能导致统计出现错误。SPSS连续变量和分类变量的区别,SPSS连续变量和分类变量的关系是怎样的,本文向大家作简单介绍。
2025-06-26

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: