SPSS > 使用技巧 > SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办

SPSS标准化残差散点图怎么画 SPSS标准化残差大于3怎么办

发布时间:2025-06-12 09: 28: 00

品牌型号:联想ThinkBook

系统:windows10 64位旗舰版

软件版本:IBM SPSS Statistics 29.0

在针对因变量为数值型变量展开建模分析的时候,研究者可以使用SPSS线性回归的残差分析检验变量的正态性特征,例如以残差等方差性判断回归残差的方差齐性,进而有助于优化和改进线性数据建模。今天,我们SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办这两个问题为例,带大家了解一下SPSS标准化残差散点图的相关知识。

一、SPSS标准化残差散点图怎么画

残差图y轴为测算预期数据值的累积概率,x轴为实际数值的累积概率,通过对残差图的呈现特征进行分析,我们能够了解线性数据集的整体模型。接下来展示一下如何进行SPSS残差图绘制的具体过程。

1、下图是某大型农田黄豆产量数据,黄豆产量作为因变量,施入的氮肥和试剂药量对黄豆产量均有影响,这里以新研发的试剂施入量为例,探究试剂添入量与农田黄豆产量的关系以及线性回归情况。所以我们先找到SPSS数据编辑表格的分析按键,点击如下标注的回归模块的线性选项栏。

试剂量和黄豆产量的线性回归
图1:试剂量和黄豆产量的线性回归

2、因为案例数据的农田黄豆产量为因变量,所以将第一列的产量数据移动到【因变量】空框中,再将作为自变量的试剂g移动到【块】,在下方的【方法】模块选择【输入】,完成残差分析的变量设置。

残差分析的变量设置
图2:残差分析的变量设置

3、在统计栏的回归系数模块,勾选其中的【估算值】,为了进一步了解模型拟合程度,所以还需要勾选【模型拟合】和【R方变化量】以及【描述】选项,最后勾选残差模块的【德宾沃森】模式。

回归的统计设置
图3:回归的统计设置

4、然后进入线性回归的残差制图设置,将最右侧列的ZPRED移动到【X】,ZRESID移动到【Y】,在标准化残差图勾选【正态概率图】选项,再点击【继续】按键。

选择ZRESID和ZPRED
图4:选择ZRESID和ZPRED

二、SPSS标准化残差大于3怎么办

残差图、模型拟合度、ANOVA因素分析等结果可以用来判断回归模型在正态性、线性关系、独立性等方面的情况,进而判断是否存在异常值。如果SPSS标准化残差大于3,表明数据中存有离群点即异常值,应该考虑剔除相关异常值。

1、按照上述步骤,我们得到案例数据农田黄豆产量和试剂施入量的残差散点图,下图的数据值基本分布在一条直线上,表明数据残差服从正态分布,满足农田黄豆产量和新研发试剂量线性回归的假设。

回归标准化残差的正态图
图5:回归标准化残差的正态图

2、接下来我们可以在SPSS输出页面得到模型摘要的数据,R方代表模型拟合度,取值在0到1之间,越接近1表示模型拟合度越好,这里的R方值为0.91表明回归建模拟合度高,显著性p值小于0.05表明自变量试剂量可以显著改善对因变量黄豆产量的预测。

案例数据建模拟合度
图6:案例数据建模拟合度

3、在ANOVA分析图表,可以看到回归平方和为261770.115,残差平方和为25959.393,回归的显著性p<0.05表示模型构建有意义,由此可以查看后续的分析测验结果。

ANOVA回归显著性
图7:ANOVA回归显著性

4、最后我们来看系数检验结果,新研发试剂施入量的非标准化系数为38.758,标准化系数0.954,显著性p<0.001表明自变量试剂量可以显著正向预测农田黄豆产量。

试剂量的系数检验
图8:试剂量的系数检验

三、小结

以上就是 SPSS标准化残差散点图怎么画,SPSS标准化残差大于3怎么办的解答。当需要分析数据模型拟合度时,推荐使用SPSS残差图绘制的方法,有助于后续研究提升回归模型的稳健度。最后,也欢迎大家前往SPSS的中文网站,学习更多关于数据分析的操作技巧。

展开阅读全文

标签:SPSS标准化处理SPSS标准化

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14
SPSS事后比较怎样进行 SPSS事后比较多重校正应如何设置
在数据分析的过程中,经常会在数据分析之后对它进行事后比较的操作。事后比较可以在方差分析的基础之上帮助我们快速找到具体存在差异的数据组。简单来说,大家可以把方差分析理解为起到了一个提示作用,告诉了我们数据样本中的均值并不相等且存在差异,但是如果想要找到具体的差异点在哪里,就需要用到事后比较了。而在进行事后比较的过程中,还会遇到设置多重校正的情况。下面以SPSS为例,给大家介绍SPSS事后比较怎样进行,SPSS事后比较多重校正应如何设置。
2026-01-14
SPSS怎么查看缺失值分布 SPSS数据缺失严重怎么处理更合理
我们在对数据样本进行统计时,经常会遇到排查缺失值的情况,缺失值指数据样本分析中出现的数值丢失情况。如果数据样本中存在的缺失值数量较多的情况,可能会导致数据分析的结果出现偏差。SPSS作为一款专业的数据分析软件,许多用户都会用它来进行数据分析,下面我们以SPSS为例,向大家介绍SPSS怎么查看缺失值分布,SPSS数据缺失严重怎么处理更合理的具体内容。
2026-01-14
SPSS变量类型怎么修改 SPSS变量标签修改后分析报错怎么办
在数据分析这个领域中,我们经常会面临着修改数据变量类型的情况。因为在一组数据变量中会存在着多种不同的变量类型(自变量、因变量、定类变量、定序变量等),这些变量类型在数据样本中担任着不同的角色,在样本分析中也有着不同的作用。下面就以SPSS数据分析软件为例,给大家介绍SPSS变量类型怎么修改,SPSS变量标签修改后分析报错怎么办的具体内容。
2026-01-14
SPSS如何导出分析报告 SPSS报表内容丢失怎么修复
数据分析报告作为承载着数据分析结果的重要内容,既起到了数据样本分析总结的作用,又可以将这部分数据分析结果应用到其他的领域和研究当中(可以作为重要的数据样本参考)。所以导出数据分析报告和修复丢失的数据就成为了数据分析中的一个重要环节,下面以SPSS为例,向大家介绍SPSS如何导出分析报告,SPSS报表内容丢失怎么修复的具体内容。
2026-01-14
SPSS协方差结构怎样设定 SPSS协方差结构拟合应如何比较
在数据分析的领域当中,协方差结构是一项重要的分析方式。作为着重分析同一数据集在不同变量之间相互关系的分析法,协方差结构在实际应用的过程中回答了一部分数据点位发生变化的时候,另一部分点位会以什么样的形式跟随变化。而协方差结构的拟合数据同样可以帮助我们观察数据的变化趋势。下面以SPSS为例,给大家介绍SPSS协方差结构怎样设定,SPSS协方差结构拟合应如何比较的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: