SPSS > 使用技巧 > SPSS方差分析怎么看交互效应 SPSS方差分析怎么看结果数据

SPSS方差分析怎么看交互效应 SPSS方差分析怎么看结果数据

发布时间:2024-12-16 16: 44: 00

品牌型号:Dell N5010

系统:Windows 10

软件版本:IBM SPSS Statistics 试用版

双因素方差分析(Two-way ANOVA)是一种统计分析方法,用于研究两个自变量(也称为因素)对一个因变量(响应变量)的影响,同时分析两个自变量之间是否存在交互作用。双因素方差分析应用广泛,如实验设计中的多因素实验,双因素方差分析可以了解两个实验条件对实验结果的单独影响,以及实验条件之间是否存在相互作用。大家可以借助专业的统计分析软件,如IBM SPSS Statistics,进行双因素方差分析。SPSS方差分析怎么看交互效应,SPSS方差分析怎么看结果数据,本文将向大家作简单的介绍。

一、SPSS方差分析怎么看交互效应

对于某植物某阶段的生长,需要考虑光照和浇水两个因素的影响。实验数据如图1所示,我们以此为例向大家介绍,如何查看两个因素的交互效应。

统计数据
图1 统计数据

首先为变量设置类别,一个实验条件代表一个类别,光照类别:1.0,1.5,2.0,2.5对应类别1,2,3,4;浇水10,15,20 对应类别为1,2,3,如图2所示。

设置类别
图2 设置类别

录入各自条件下测定的结果数据,如图3所示。

录入数据
图3 录入数据

进行双因素方差分析,点击【分析】。【一般线性模型】,【单变量】。

进行方差分析
图4 进行方差分析

将“生长量”指定为因变量,“光照”和“浇水”指定为因子。

指定因变量和固定因子
图5 指定因变量和固定因子

单击【模型】,选择“构建项”,将两个因子加入到“模型”中,点击“类型”,在下拉菜单中选择“主效应”,点击【继续】。点击【确定】,SPSS将对数据进行双因素方差分析,并将分析结果输出至查看器。

设置构建项
图6 设置构建项

进行双因素交互效应的评估,应关注主体间效应检验R平方这个数值,此值为光照平方和与浇水平方和与总计平方和的比值,计算公式如图7所示。

交互效应计算公式
图7 交互效应计算公式

根据图中主体间效应检验表格数据,经计算,本例中R平方为0.887=(4.449+0.932)/6.209。即总体变化的88.7%可由光照和浇水共同解释,剩余变化11.3%由误差解释。表明光照和浇水之间交互作用对生长量影响强烈。

计算交互效应
图8 计算交互效应

除交互相应,还应分析各因素对结果影响是否显著,我们在第二小节中向大家介绍。

二、SPSS方差分析怎么看结果数据

在本例中,光照和浇水显著性系数分别为0.008和0.14。光照显著性系数小于0.05,应接受备选假设,认为光照对植物生长有显著影响。浇水显著性系数为0.14,大于0.05,接受原假设,认为该因素对植物生长未产生显著影响。

方差分析结果
图9 方差分析结果

本文向大家介绍了有关SPSS方差分析怎么看交互效应,SPSS方差分析怎么看结果数据的内容。多因素方差分析可以了解哪些因素对最终结果产生显著性影响,我们可以根据分析结果更好地施加干预。多因素方差分析还应了解数据的方差齐性问题,感兴趣的用户可以登录SPSS中文网站,查阅相关资料。

展开阅读全文

标签:多因素方差分析多元方差分析

读者也访问过这里:
SPSS Statistics
强大的数据分析平台
立即购买
微信群
官方微信群 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
spss如何做显著性分析 spss显著性差异分析怎么标abc
在统计分析中,显著性分析是分析相关因素之间是否存在显著影响关系的关键性指标,通过它可以说明分析结论是否由抽样误差引起还是实际相关的,可论证分析结果的准确性。下面大家一起来看看用spss如何做显著性分析,spss显著性差异分析怎么标abc。
2022-03-14
SPSS回归分析中的f值是什么 SPSS回归分析F值在什么范围合适
回归分析中以R表示相关性程度的高低,以F评价回归分析是否有统计学的意义,使用IBM SPSS Statistics进行回归分析,可以非常快速的完成R,F的计算,并且给出回归曲线方程,那么,SPSS回归分析中f值是什么?SPSS回归分析F值在什么范围合适,本文结合实例向大家作简单的说明。
2022-07-22
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
最新文章
SPSS非参数检验怎么测中位数 SPSS非参数检验z值的意义
IBM SPSS Statistics这款软件对用户非常友好,例如非参数检验、数据随机性验证等统计分析,不需要复杂的操作,跟着步骤提示进行操作,即可快速生成统计结果表,新手也能快速掌握。今天我们就围绕SPSS非参数检验怎么测中位数,SPSS非参数检验z值的意义相关内容为大家展开介绍。
2026-01-30
SPSS随机值检验步骤 SPSS随机检验结果怎么看
很多人都听过IBM SPSS Statistics这款软件,它是数据分析的可靠搭档,不仅能轻松搞定数据的整理、转换,最后还能自动生成图表,对新手非常友好。对于经常需要进行学术研究、市场调研的用户来说是个常用的选择。今天我们就来说一下SPSS随机值检验步骤,SPSS随机检验结果怎么看的相关内容。
2026-01-30
SPSS为什么没有事后检验 SPSS事后检验结果怎么看
SPSS作为一款优秀的数据统计分析软件,深受数据统计分析人员的喜爱。SPSS之所以这么受欢迎,除了SPSS有很多的数据统计分析方法,可以帮助统计分析人员更高效的进行数据分析,还因为SPSS的人性化操作,一些刚入行的统计小白,也可以快速的掌握SPSS,接下来给大家详细介绍有关SPSS为什么没有事后检验,SPSS事后检验结果怎么看的相关内容。
2026-01-30
SPSS重复测量怎样分析 SPSS重复测量球形性应如何检验
重复测量是数据分析中的一个重要环节。主要用来分析和检验数据样本中同一对象的相同指标在不同条件或者环境之下的变化情况,所以需要对这部分数据进行重复的测量和分析。例如我们统计一组大学生毕业后的就业情况,那么大学生的专业分类和性别都一致的情况下,就需要分析不同的就业影响因素对于最后就业率的影响。下面给大家介绍SPSS重复测量应当怎样分析,SPSS重复测量球形性应如何检验。
2026-01-14
SPSS亚组分析的注意事项 SPSS亚组分析结果解读
对于经常与数据分析打交道的小伙伴来说,想必对亚组分析这个概念应该不会感到陌生。亚组分析是用来检测异质性结果的方法之一,亚组分析的数据结果分为确证性、支持性和探索性三类。而我们在进行亚组分析时,可以借助数据分析软件SPSS的帮助,它一方面可以帮助我们得到亚组分析的数据结果,还能够把这些数据分析结果以报告形成呈现出来。接下来给大家介绍SPSS亚组分析的注意事项, SPSS亚组分析结果解读的具体内容。
2026-01-14
SPSS卡方检验样本不满足要求怎么办 卡方检验SPSS结果都小于0.5说明了什么
在数据分析的过程中,卡方样本检验是常见的一种统计方式。卡方检验主要用来检验数据样本之间的离散程度,进而判断不同数据之间的偏差值,如果数据样本在统计的时候不符合实际的统计需求,就可能导致卡方检验不满足要求。所以我们需要在统计的过程中对数据样本和统计方法进行调整,这样能够规避数据样本检验带来的结果偏差风险。下面以SPSS为例,给大家介绍SPSS卡方检验样本不满足要求怎么办,卡方检验SPSS结果都小于0.5说明了什么的具体内容。
2026-01-14

微信公众号

欢迎加入 SPSS 产品的大家庭,立即扫码关注,获取更多软件动态和资源福利。

读者也喜欢这些内容: