IBM SPSS Statistics 中文网站 > 使用技巧 > SPSS卡方检验结果解读

SPSS卡方检验结果解读

发布时间:2021/04/08 11:20:52

卡方检验是数据分析的重要手段之一,它可以用来检验数据的适合度和相关性,IBM SPSS Statistics中也为用户提供了各类卡方检验的项目。

接下来将为大家介绍的就是使用IBM SPSS Statistics对数据样本进行适合度检验时产生的结果的分析方法。

一、概述

1.卡方检验

1
图1:卡方检验功能位置

当需要研究某一类别变量的实际观察次数和理论次数是否一致时,就可以利用卡方检验来实现,这是一种单因子检验。

2.数据样本

2
图2:数据样本

比如我们这里用到的数据样本是:一个事件存在三种发展方向,三个方向发生的机会均等且概率和为1,那么它们的理论发生次数就是相等的,概率各为三分之一,上图是实际观测到的次数。

如果要检验实际观测次数和理论次数的适合度如何,就可以使用SPSS的卡方检验来实现。

二、结果分析

1.检验

3
图3:设计卡方检验

按上图所示方法设计卡方检验的项目,这样的设计方法是针对我们这里使用的各水平机会均等的数据样本的,如果是其他类型的样本,项目设计会有所不同。

2.结果分析

4
图4:频率结果

在输出日志窗口,我们可以看到有两个结果表格。第一个表格是频率统计,第一列是实际观测到的数据,第二列是计算出的期望数值(机会均等,所以就是总个数的平均值),第三列是实测数据和期望数值的差值,也就是残差,残差的绝对值越大,前两列的数据偏离度越大。

表中数据显示,方向2的残差较小,数据的偏离度较小,关联度较大;方向1和3则偏离度较大,存在显著差异。

5
图5:检验统计

第二个表格是系统计算出的卡方、自由度和显著性,这里显示卡方值为10.417,自由度为2,显著性系数,也就是我们常说的p值是0.005,下面标注了期望小于5的单元格为0,最小期望是46.7,对于本样本来说,这里的p值意义更大一点。

p值大于0.05时,则表示数据之间没有显著差异,由于本例中p值(0.005)远小于0.05,所以卡方检验的结果就是观测值与理论值之间存在显著差异,主要表现在方向1和方向3的数据上。

三、小结

这篇文章中我们主要介绍了SPSS卡方检验用来检验适合度时,对各水平机会均等的数据样本该如何设计并进行结果分析,这是卡方检验中较为基础的一种,充分了解可以为更深入的卡方检验打下基础,希望可以对大家有所帮助!

如果您对数据分析或SPSS软件有更多兴趣,欢迎进入IBM SPSS Statistics中文网站查看其他软件资讯和案例分享。

作者:参商

标签:IBM SPSS Statistics卡方检验

读者也访问过这里:
SPSS Statistics
一款功能强大的数据统计分析工具
立即购买
QQ 群
官方交流群:815794396 立即加群
400-8765-888 kefu@makeding.com
热门文章
SPSS数据分析显著性差异分析步骤 SPSS显著性差异分析结果怎么看
数据的显著性差异分析主要有三种方法,分别是卡方检验、T检验和方差分析。这三种方法都有具体的数据要求:卡方检验是对多个类别的数据进行分析,T检验是对两组数据进行分析,方差分析是对多组数据进行检验。下面,小编具体说明一下SPSS数据分析显著性差异分析步骤,SPSS显著性差异分析结果怎么看。
2022-01-07
实践SPSS单因素方差分析之检验结果解读
在《实践SPSS单因素方差分析之变量与检验方法设置》一文中,我们已经详细地演示了IBM SPSS Statistics单因素方差分析方法的变量选择以及相关的选项、对比设置。
2021-01-11
SPSS相关性分析结果怎么看
相关性分析是对变量或个案之间相关度的测量,在SPSS中可以选择三种方法来进行相关性分析:双变量、偏相关和距离。
2021-04-23
SPSS多元logistic回归分析的使用技巧
回归分析是数据处理中较为常用的一类方法,它可以找出数据变量之间的未知关系,得到较为符合变量关系的数学表达式,以帮助用户完成数据分析。
2021-04-26
如何通过SPSS对问卷进行效度分析
效度分析是指测量的根据或手段(在问卷中为问卷题目)是否能有效检测所需测量事物的程度,是问卷分析中几乎必须进行的一个环节,效度分析分为内容效度、准则效度和结构效度,问卷分析一般所使用的效度分析一般是结构效度。通过数据分析软件IBM SPSS Statistics(win)的效度分析功能我们可轻松获得关于问卷的效度分析结果,帮助我们更好设计或评估问卷。那么如何通过IBM SPSS Statistics对问卷进行效度分析。
2021-10-26
SPSS进行变量赋值的相关操作
变量和个案是IBM SPSS数据界面很重要的两个部分,可以形象理解为地球仪上的经线和纬线。通俗一点讲数据界面的每一列是一种变量,如年龄性别等。一行中的所有变量又构成了一个个案,本篇文章着重讲解变量,个案就不做过多展开。在图1中有具体的标注,可以看一下变量和个案到底是什么样。
2021-02-23